dcpam5 支配方程式系とその離散化

地球流体電脳倶楽部

平成 25 年 10 月 8 日

目 次

第1章	はじめに	1
1.1	この文書について.............................	1
1.2	dcpam5の概要	1
第2章	坐標糸・変換公式	4
2.1		4
2.2		4
2.3	水平格子点	4
2.4	鉛直レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5	水平スペクトル	6
	2.5.1 水平スペクトルの基底の導入	6
	2.5.2 波数切断	7
	2.5.3 離散化したスペクトルの基底の直交性	8
	2.5.4 格子点値とスペクトルの係数との変換法	8
	2.5.5 内挿公式	9
	2.5.6 空間微分の評価	9
2.6	参考文献	10
2.6 笙3音	参考文献	10
2.6 第3章	参考文献 · · · · · · · · · · · · · · · · · · ·	10 1
2.6 第3章 第4章	参考文献 · · · · · · · · · · · · · · · · · · ·	10 11 13
2.6 第3章 第4章 4.1	参考文献 · · · · · · · · · · · · · · · · · · ·	10 1 1 1 3 13
2.6 第3章 第4章 4.1 4.2	参考文献 1 モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1	10 1 1 13 13
2.6 第3章 第4章 4.1 4.2	参考文献 1 モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式	10 1 1 13 13
2.6 第3章 第4章 4.1 4.2	参考文献 1 モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 4.2.2 静水圧の式	10 11 13 13 13 13
2.6 第3章 第4章 4.1 4.2	参考文献 1 モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 4.2.2 静水圧の式 4.2.3 運動方程式	10 11 13 13 13 14 14
2.6 第3章 第4章 4.1 4.2	参考文献 1 モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1	10 11 13 13 13 14 14
2.6 第3章 第4章 4.1 4.2	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1 連続の式14.2.2 静水圧の式14.2.3 運動方程式14.2.4 熱力学の式14.2.5 水蒸気の式1	10 11 13 13 13 14 14 14
2.6 第3章 第4章 4.1 4.2	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1連続の式4.2.2静水圧の式4.2.3運動方程式4.2.4熱力学の式4.2.5水蒸気の式4.2.6境界条件	10 11 13 13 13 14 14 14 14
2.6 第3章 第4章 4.1 4.2	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1連続の式4.2.2静水圧の式4.2.3運動方程式4.2.4熱力学の式4.2.5水蒸気の式4.2.6境界条件4.27水平拡散とスポンジ層	10 11 13 13 13 13 14 14 14 14 14
2.6 第3章 第4章 4.1 4.2	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1連続の式4.2.2静水圧の式4.2.3運動方程式4.2.4熱力学の式4.2.5水蒸気の式4.2.6境界条件4.2.7水平拡散とスポンジ層4.2.8水平拡散係数の値を決めるための判断材料	10 11 13 13 13 13 14 14 14 14 14 17 17
2.6 第3章 第4章 4.1 4.2	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1連続の式14.2.2静水圧の式14.2.3運動方程式14.2.4熱力学の式14.2.5水蒸気の式14.2.6境界条件14.2.7水平拡散係数の値を決めるための判断材料1離散表現・鉛直離散化1	10 11 13 13 13 13 14 14 14 14 14 17 17 18 20
2.6 第3章 第4章 4.1 4.2 4.3	参考文献1モデル全体での時間積分の概要1力学過程1はじめに1数理表現14.2.1 連続の式14.2.2 静水圧の式14.2.3 運動方程式14.2.4 熱力学の式14.2.5 水蒸気の式14.2.6 境界条件14.2.7 水平拡散とスポンジ層14.2.8 水平拡散係数の値を決めるための判断材料1離散表現:鉛直離散化24.31連続の式 鉛直速度	10 11 13 13 13 13 14 14 14 14 14 17 18 20 20

basic `equations.tex

	4.3.2 静水圧の式	0
	4.3.3 運動方程式	1
	4.3.4 熱力学の式 2	2
	4.3.5 水蒸気の式 2	3
	4.3.6 鉛直差分に関する補足 2	3
	4.3.7 鉛直レベルの決め方 2	4
4.4	離散表現:水平離散化2	4
	4.4.1 連続の式	4
	4.4.2 運動方程式	6
	4.4.3 熱力学の式 2	7
	4.4.4 水蒸気の式 2	8
4.5	離散表現:時間離散化2	8
	4.5.1 力学過程の方程式系の時間差分式	9
4.6	参考文献	3
第5章	物質移流 3	5
5.1		5
5.2	移流万程式の数埋表現3	6
5.3		6
	5.3.1 水平	6
	5.3.2 鉛直	7
5.4		7
	$5.4.1$ \mathcal{K} \mathcal{H}	7
	5.4.2 鉛直	2
	5.4.3 上卜端境界	5
5.5		5
	5.5.1 Sun et al. (1996) $\mathcal{T}\mathcal{I}\mathcal{V}\mathcal{P}$	6
	5.5.2 Arcsine 変換フィルタ	6
5.6	ネームリストによる制御 4	8
笛 6 音	物理過程で田山ろ予備変数	q
6 1		9
6.2	離 離 数 世 1 1 1 1 1 1 1 1 1 1 1 1 1	9
0.2	能設設 現	0 0
	6.2.1 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
		0
第7章	放射 5	1
7.1	はじめに	1
7.2	数理表現: 共通部分	1
	7.2.1 加熱率	1

		7.2.2 散乱を無視した場合の放射伝達方程式	52
		7.2.3 散乱を考慮した二流近似した放射伝達方程式	53
	7.3	離散表現: 共通部分	55
		7.3.1 加熱率	55
		7.3.2 散乱を無視した場合の放射伝達方程式	56
		7.3.3 散乱を考慮した二流近似した放射伝達方程式	57
	7.4	数理表現: AGCM5 放射モデル	52
		7.4.1 長波放射	52
		7.4.2 短波放射	33
	7.5	離散表現: AGCM5 放射モデル	35
		7.5.1 長波放射	35
		7.5.2 短波放射	36
	7.6	数理/離散表現:地球放射モデル	37
		7.6.1 概要	37
		7.6.2 長波放射:概要	37
		7.6.3 長波放射:波長の分割	37
		7.6.4 長波放射:透過率の計算	37
	7.7	大気上端での恒星の放射フラックス..................	71
	7.8	放射計算で用いるパラメータ・・・・・・・・・・・・・・・・	78
	7.9	参考文献	79
~ ~	a 		
弟	8草	植雲対流を	3 1
	8.1		31
	8.2		31
		8.2.1 離散表現	31
	8.3	Relaxed Arakawa-Schubert $\mathbf{X} = \mathbf{-} \mathbf{\Delta}$	35
	8.4	参考又献	35
笙	0 音	非対流性凝结 (大規模凝结) 8	86
~	9 1	· 新的表現	26
	9.1	参老文献	27
	5.4		,
第	10章	乱流過程 8	38
	10.1	数理表現	38
		10.1.1 乱流運動エネルギー , 鉛直拡散係数 1 (Mellor and Yamada	
		level 2)	90
		level 2)	90
		level 2)	90 92
		level 2)	90 92 94

basic `equations.tex

		10.1.5 乱流過程で用いられるパラメータの値	98
	10.2	離散表現................................	99
		10.2.1 乱流運動エネルギー, 鉛直拡散係数 1 (Mellor and Yamada	
		level 2) の離散表現	102
		10.2.2 乱流運動エネルギー, 鉛直拡散係数 2 (Mellor and Yamada	
		level 2.5) の離散表現	103
		10.2.3 バルク係数 共通部分 (Louis et al., 1982; Beljaars and Holt-	
		slag, 1991) の離散表現	109
		10.2.4 バルク係数 2 (Beljaars and Holtslag, 1991; Beljaars, 1994)	
		の離散表現	110
		10.2.5 運動量拡散の差分方程式の整理	112
		10.2.6 熱拡散の差分方程式の整理	113
		10.2.7 水蒸気 (物質) 拡散の差分方程式の整理	116
	10.3	参考文献	118
第	11 章	乾燥対流調節 1	20
215			
第	12章	惑星表面・地下の熱収支 1	21
	12.1	数理表現................................	121
		12.1.1 惑星表面 1 層モデル	121
		12.1.2 土壌熱拡散モデル	122
		12.1.3 海氷 1 層熱収支モデル	122
	12.2	離散表現....................................	123
		12.2.1 惑星表面 1 層モデル	123
		12.2.2 地表面における熱収支と地下における熱伝導方程式	124
		12.2.3 氷の融解・融雪による熱収支の修正	128
		12.2.4 海氷面上の熱収支	130
		1995 海氷の融解による熱収古の修正	101
			131
渔	13 音	12.2.9 海尓の融解による怒快文の修正	131 33
第	13章	12.2.5 海尔の融解による蒸放文の修正 ····································	131 1 33 133
第	13章 13.1	12.2.5 海尔の融解による蒸放文の修正	131 1 33 133
第	13章 13.1 13.2	12.2.3 海尔の融産による蒸気支いして、 1 バケツモデル 1 数理表現 1 離散表現 1 参考文献	131 1 33 133 133
第	13 章 13.1 13.2 13.3	12.2.3 海尔の融産による蒸気支付 1 ボケツモデル 1 数理表現 1 離散表現 1 参考文献 1	131 133 133 133 134
第 第 第	13章 13.1 13.2 13.3 14章	12.2.3 海尔の融解による蒸戦文の修正 1 ボケツモデル 1 数理表現 1 離散表現 1 参考文献 1 熱収支を統合した連立方程式の構成 1	131 133 133 134 134
第 第	13 章 13.1 13.2 13.3 14 章 14.1	12.2.3 海尔の融産による蒸気支援 1 バケツモデル 1 数理表現 1 離散表現 1 参考文献 1 熱収支を統合した連立方程式の構成 1 離散表現 1	131 133 133 134 134 135
第 第	13章 13.1 13.2 13.3 14章 14.1	12.2.3 海尔の融評による XRQ COIPE 1 バケツモデル 1 数理表現 1 離散表現 1 参考文献 1 熱収支を統合した連立方程式の構成 1 離散表現 1 14.1.1 惑星表面に 1 層モデルを用いる場合	131 133 133 134 134 135 135
第第第	 13章 13.1 13.2 13.3 14章 14.1 	12.2.3 海尔の融牌による蒸気(200回上) 1 ジ理表現 1 数理表現 1 離散表現 1 参考文献 1 熱収支を統合した連立方程式の構成 1 離散表現 1 14.1.1 惑星表面に1層モデルを用いる場合 14.1.2 土壌熱拡散モデルを用いる場合	131 133 133 133 134 135 135 135

第	15 章	雲モデル	139
	15.1	はじめに	139
	15.2	数理表現	139
	15.3	離散表現	140
第	17章	飽和比湿・凝結温度	141
	17.1	はじめに............................	141
	17.2	飽和比湿	141
		17.2.1 AGCM5 で用いられた式	142
		17.2.2 Nakajima et al. (1992) で用いられた式	142
		17.2.3 Tetens (1930) の式	143
	17.3	二酸化炭素の凝結温度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
	17.4	参考文献	143
付	録 A	惑星大気の物理定数	145
	A.1	地球大気の物理定数	145
<i>,</i> .			
1寸	録B	とにした。 とで、 と、 と、 と、 と、 と、 と、 と、 と、 と、 、 、 、 、 、 、 、 、 、 、 、 、 、	146
	B.1		146
			147
			151
		B.1.3 コメント — 全波数について	151
			153
	B.2	微分公式, GCM の変数の微分関係式 · · · · · · · · · · · · · · · · · · ·	154
		B.2.1 スカラー量の微分	154
		B.2.2 ベクトル量の微分	154
		B.2.3 発散	155
		B.2.4 渦度	155
		B.2.5 速度ボテンシャル、流線関数と (u,v)	155
	B.3	Legendre 函数 P_n の性質	155
		B.3.1 多項式とLegendre 函数の積の積分	156
		B.3.2 Legendre 函数の零点	156
	B.4		157
		B.4.1 Gauss の台形公式	157
		B.4.2 Gauss-Legendre の公式	158
	B.5		162
	B.6	スペクトルの係数と格子点値とのやり取り	164
		B.6.1 スペクトルの係数と格子点値との値のやり取り	165
		B.6.2 スペクトルの係数と格子点値との値のやり取り~東西微分編	165
		B.6.3 スペクトルの係数と格子点値との値のやり取り~南北微分編	166

		B.6.4	χ,ψ のス	ペクトル	ルの係	系数7	56	速	度の)格	子	点	値╯		DZ	ど打	2		168
	B.7	スペク	トルの係数	如同士の)関係					•				•			•		169
	B.8	波数切	断...							•				•			•		170
		B.8.1	波数切断	の仕方						•	•			•					170
		B.8.2	切断波数	の決めフ	5					•				•			•		172
	B.9	スペク	トルモデノ	レと差分	} モデ	ル				•	•			•			•		177
	B.10	参考文	轼							•	•			•	•	•	•		178
付	録C	使用上	この注意と	ライセ	ンス教	見定													179

第1章 はじめに

1.1 この文書について

この文書は、地球流体電脳倶楽部で開発中の大気大循環モデル、dcpam、のバージョン5である dcpam5の支配方程式系およびその離散化手法を解説したものである.

現状では、本文書の内容とソースコードとで一致しない箇所もあることに注意されたい。

1.2 dcpam5の概要

ここでは,現在版 (2013/09/20) の dcpam5 の概要を示す.下に示す各過程は実装 してあるが,すべてを使わなくても計算を行うことはできる.

- 移流
 - プリミティブ方程式系
 - 物質移流の計算方法はスペクトル変換法、セミ・ラグランジュ法 (Kashimura et al., 2013) から選択

• 放射

- AGCM5 放射モデル (Numaguti, 1992)
- 地球用放射モデル
 - * 紫外・可視・近赤外 (2600-57142.85 cm⁻¹)
 - 1000-57142.85 cm⁻¹ を 11 バンドに分割 (バンド分割は Chou and Lee (1996) に従う)

- ・ δ-Eddington 近似した放射伝達方程式により計算 (Toon et al. (1989)の方法を用いて計算)
- H₂O の透過率は, Chou and Lee (1996) による k 分布法のパラ
 メータを使用して計算
- ・ 雲の消散係数,単一散乱アルベド,非対称因子は Chou et al.
 (1998)の値を使用
- ・レイリー散乱係数は Chou and Lee (1996) の値を使用
- · O₃ の吸収係数は Chou and Lee (1996) の値を使用
- * 赤外 (0-3000 cm⁻¹)¹
 - 0-3000 cm⁻¹ を 9 バンドに分割 (バンドの分割は Chou et al. (2001) に従うが, band 10 は無視)
 - ・散乱を無視した放射伝達方程式により計算
 - H₂O, CH₄, N₂O の透過率は Chou et al. (2001) の方法に基づ
 いて計算
 - CO₂ の透過率 (低高度版) は Chou et al. (2001) の方法に基づ
 いて計算
 - CO₂ の透過率 (高高度版) は Chou and Kouvaris (1991) の方法 に基づいて計算
 - · O₃ の透過率は Chou and Kouvaris (1991) の方法に基づいて
 計算
 - ・ 雲の消散係数,単一散乱アルベド,非対称因子は Chou et al.
 (2001)の値を使用 (雲量は 1 を仮定)
- 火星用放射モデル (Takahashi et al., 2003, 2006 の改良版)
- サブグリッドスケール混合・凝結
 - 乱流混合
 - * Mellor and Yamada level 2 (Mellor and Yamada, 1974, 1982)
 - * Mellor and Yamada level 2.5 (Mellor and Yamada, 1982)
 - * バルク法による地表面フラックス (Louis et al., 1982)
 - * バルク法による地表面フラックス (Beljaars and Holtslag, 1991; Beljaars, 1994)
 - 乾燥対流調節 (e.g., Manabe et al., 1965)
 - 積雲対流
 - * **湿潤対流調節** (Manabe et al., 1965)

¹2600-3000 cm⁻¹ は重複. 300 K の黒体放射では、この波数区間のエネルギーは、0.5 W m⁻².

* Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992)

- 非対流性凝結 (大規模凝結) (Manabe et al., 1965)
- 雲
 - 移流, 乱流混合, 凝結による生成, 定数時定数による消滅を考慮して雲水
 混合比を予報
- 惑星表面
 - 陸面
 - * 陸面における熱収支
 - ・地中熱伝導方程式を数値的に解くことで土壌温度を計算
 - * バケツモデル (Manabe, 1969) によって土壌水分を計算
 - * 積雪の扱い
 - ・最下層大気温度が 273.15 K 以下の場合に雨は雪となる
 - · 海氷上には雪は積もらない
 - ・土壌1層目の熱収支を修正して融雪
 - ・融けた雪は土壌水分に加算
 - · 蒸発効率 1.0
 - _ 「海」
 - * 下の2つから選択
 - ·海表面温度と海表面密度を固定 / ファイルから与える
 - ・ 板海 (slab ocean) によって海表面温度を計算

第2章 座標系・変換公式

2.1 はじめに

ここでは,座標系および水平格子点,鉛直レベルの取り方を記す.さらに,力学過程 の時間積分において使用する水平スペクトルを定義し,格子点値とスペクトルの係 数との変換則を記す.

2.2 座標系

座標系は、水平方向には緯度 φ 、経度 λ を、鉛直方向には $\sigma \equiv \frac{p}{p_s}$ をとる. ここで pは気圧、 p_s は地表面気圧である.

座標の取り方に関する詳細は別紙『支配方程式系の導出に関する参考資料¹』の『座 標系の取り方』を参照せよ。

2.3 水平格子点

dcpam5 は、水平移流の計算にスペクトル変換法を用いているため、水平方向の格 子点の位置は、Gauss 緯度(格子点数 J 個²)、等間隔の経度(同 I 個)である.

• Gauss 緯度

¹http://www.gfd-dennou.org/library/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm ²以下, *J* は偶数とする. dcpam5 では、(Gauss 緯度としてとる場合には) *J* は偶数でなければな らない.

Gauss 緯度を J次の Legendre 函数 $P_J(\sin \varphi)$ の零点 $\varphi_j(j = 1, 2, 3, \dots, J)$ と して定義する. 順番としては, $\frac{\pi}{2} > \varphi_1 > \varphi_2 > \dots > \varphi_J > -\frac{\pi}{2}$ とする³. なお 以後, $\sin \varphi = \mu$ と書くことがある.

経度方向の格子点

経度方向の格子点の位置を

$$\lambda_i = \frac{2\pi(i-1)}{I} \quad (i = 1, 2, \cdots, I)$$
(2.1)

ととる.

2.4 鉛直レベル

Lorentz グリッドを用いる. この格子配置では、水平風速、温度、比湿、物質の混合比⁴ は鉛直層の中心に配置され、鉛直速度は鉛直層の境界に配置される. また、 dcpam5 において鉛直層を配置する際に位置を決めるのは鉛直層の境界であり、中 心位置ではない. 鉛直層の中心位置はモデルの中で適当に計算される.

鉛直層には、下の層から上へと層の番号をつける. 層の番号には、層の境界においては半整数、層の中心においては整数を用いる. 鉛直総数が K のとき、半整数レベルの層番号は、下端において $\frac{1}{2}$ であり、上端において $K + \frac{1}{2}$ となる. 整数レベルの層番号は、最下層において 1 であり、最上層において K となる.

層の中心の位置 (整数レベルの σ の値 σ_k (k = 1, 2, ..., K)) は, Arakawa and Suarez (1983) の鉛直差分の方法に基づいて決めることにする. 層の中心位置の σ の値は 次の式から求める.

$$\sigma_k = \left\{ \frac{1}{1+\kappa} \left(\frac{\sigma_{k-1/2}^{\kappa+1} - \sigma_{k+1/2}^{\kappa+1}}{\sigma_{k-1/2} - \sigma_{k+1/2}} \right) \right\}^{1/\kappa}.$$
(2.2)

 ${}^{3}J$ 次の Legendre 函数 $P_{J}(\mu)$ は

$$\left[\frac{d}{d\mu}\left\{(1-\mu^2)\frac{d}{d\mu}\right\} + J(J+1)\right]P_J(\mu) = 0$$

を満たす J 次多項式であり, $P_J(\mu)$ の零点は全て $-1 < \mu < 1$ にある. なお, Gauss 緯度は近似的 には $\sin^{-1}\left(\cos \frac{j-1/2}{J}\pi\right)$ で与えられる. ⁴本当は混合比ではないらしいのだが. ここで $\kappa = \frac{R}{C_p}$, *R* は乾燥空気の気体定数, *C_p* は乾燥空気の定圧比熱である⁵. また, レベル加重 $\Delta \sigma$ は以下のように定義される.

$$\Delta \sigma_k \equiv \sigma_{k-1/2} - \sigma_{k+1/2}, \qquad (1 < k < K)$$

$$\Delta \sigma_{1/2} \equiv \sigma_{1/2} - \sigma_1 = 1 - \sigma_1, \qquad (2.3)$$

$$\Delta \sigma_{K+1/2} \equiv \sigma_K - \sigma_{K+1/2} = \sigma_K.$$

2.5 水平スペクトル

ここでは、力学過程の時間積分での計算において用いるスペクトルを導入し、格子 点での値とスペクトルの係数とのやり取りの公式を示す.

2.5.1 水平スペクトルの基底の導入

格子点上の点で定義された物理量は、格子点上でのみ値を持つ(以下このことを、 「離散化した」と呼ぶ)球面調和函数の和の形で表現される.また、各格子点におけ る物理量の水平微分を評価するために、(λ, φ)面で定義された(以下、「連続系の」 と呼ぶ)球面調和函数系で内挿して得られる関数を用いる.ここではその球面調和 函数を導入する.なお、簡単のために、連続系の球面調和函数のみを陽に記す.離 散系の球面調和函数は連続系の球面調和函数に格子点の座標を代入したものから 構成される.

⁵いずれも定数としている.

 (λ, φ) 面において,球面調和函数 $Y_n^m(\lambda, \varphi)$ は次のように定義される.

$$Y_n^m(\lambda,\varphi) \equiv P_n^m(\sin\varphi) \exp(im\lambda), \qquad (2.4)$$

ただし, m, n は $0 \le |m| \le n$ を満たす整数であり, $P_n^m(\sin \varphi)$ は 2 で規格化された Legendre 函数・陪函数

$$P_n^m(\mu) \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n, \qquad (2.5)$$

$$\int_{-1}^{1} P_{n}^{m}(\mu) P_{n'}^{m}(\mu) d\mu = 2\delta_{nn'}$$
(2.6)

である. なお, P_n^0 を P_n とも書く. また $\sin \varphi = \mu$ であることを再掲しておく.

2.5.2 波数切断

波数切断は三角形切断 (T) または平行四辺形切断 (R) とする. M, N は三角形切断, 平行四辺形切断のときについてそれぞれ以下のとおりである. ただし, 切断波数を N_{tr} とする.

- 三角形切断の場合
 $M = N_{tr}, N = N_{tr}, I \ge 3N_{tr} + 1, かつ J \ge \frac{3N_{tr} + 1}{2}.$ 自由度は, $(N_{tr} + 1)^2$ である.
- ・ 平行四辺形切断の場合
 M = N_{tr}, N(m) = N_{tr} + |m|, I ≥ 3N_{tr} + 1, かつ J ≥ 3N_{tr} + 1.

 自由度は, (2N_{tr} + 1)(N_{tr} + 1) である.

よく用いられる値の例としては、T42 の場合 I = 128, J = 64, R21 の場合 I = 64, J = 64 がある.

球面調和函数と波数切断に関する詳細は、第 B.1 節および第 B.8 節を参照せよ.

8

2.5.3 離散化したスペクトルの基底の直交性

離散化した Legendre 函数と三角関数は次の直交条件を満たす⁶.

$$\sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j = \delta_{nn'}, \qquad (2.7)$$

$$\sum_{i=1}^{I} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}.$$
(2.8)

ここで w_j は Gauss 荷重で, $w_j \equiv \frac{(2J-1)(1-\sin^2\varphi_j)}{\{JP_{J-1}(\sin\varphi_j)\}^2}$ である.

2.5.4 格子点値とスペクトルの係数との変換法

物理量 A の格子点 (λ_i, φ_j) (ただし $i = 1, 2, \dots, I$. $j = 1, 2, \dots, J$) での値 $A_{ij} = A(\lambda_i, \varphi_j)$ とスペクトル空間での Y_n^m (ただし $m = -M, \dots, M$. $n = |m|, \dots, N(m)$)の係数 \tilde{A}_n^m とは次の変換則に従う⁷.

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (2.9)$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.10)

A が実数であることを用いると、 $\left\{\tilde{A}_n^m \exp(im\lambda)\right\}^* = \tilde{A}_n^{-m} \exp(-im\lambda)$ なので、 m については負でない整数の範囲で和をとることができる⁸. ここで、"*" は複素共役

⁶詳しくは第 B.5 節を参照せよ.

⁷正変換,逆変換時の係数は整合的に与えてさえいれば問題がない.

⁸さらに、実際の計算手続きとしては、 $P_n^m(\sin \varphi)$ が、n-mが偶数 (even)の時 $\varphi = 0$ について 対称、n-mが 奇数 (odd)の時 $\varphi = 0$ について反対称であることを考慮して演算回数を減らすことができる。すなわち、 A_{ij} の計算では北半球のみについて南北対称成分 A_{ij}^{even} と反対称成分 A_{ij}^{odd} についてそれぞれ計算し、南半球については $Ai, J-j = A_{ij}^{even} - A_{ij}^{odd}$ とすればよい。また、 A_n^m の計算においては、その対称性、反対称性に基づいて $A_{i,j} + A_{i,J-j}$ または $A_{i,j} - A_{i,J-j}$ の一方をjについて 1 から J/2まで加えればよい。

を表す.ただし、A^mの定義を以下のように修正していることに注意せよ.

$$A_{ij} = \sum_{m=0}^{M} \sum_{n=m}^{N} \Re \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (2.11)$$

$$\tilde{A}_{n}^{m} = \begin{cases} \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & m = 0, \quad m \le n \le N, \\ \frac{2}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, & 1 \le m \le M, \quad m \le n \le N. \end{cases}$$

2.5.5 内挿公式

 (λ, φ) 空間で定義される物理量 $A(\lambda, \varphi)$ を格子点値 A_{ij} をもとに内挿する場合に は、変換公式を用いて A_{ij} から \tilde{A}_n^m を求めた上で、

$$A(\lambda,\varphi) \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda,\varphi)$$
(2.13)

として得る.

2.5.6 空間微分の評価

各格子点における空間微分値の評価は、内挿公式を用いて得た連続関数の空間微分の格子点値で評価する.

 λ 微分

$$\left(\frac{\partial f}{\partial \lambda}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} im \tilde{f}_{n}^{m} Y_{n}^{m}(\lambda_{i},\varphi_{j}), \qquad (2.14)$$

$$\left(\frac{\partial f}{\partial \lambda}\right)_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im f_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}.$$
(2.15)

● µ 微分

$$\left(\frac{\partial f}{\partial \mu}\right)_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{f}_{n}^{m} \left.\frac{dP_{n}^{m}}{d\mu}\right|_{j} \exp(im\lambda_{i}),$$
(2.16)

$$\left(\widetilde{\frac{\partial f}{\partial \mu}}\right)_{n}^{m} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij} \left. \frac{dP_{n}^{m}}{d\mu} \right|_{j} \exp(-im\lambda_{i})w_{j}.$$
(2.17)

2.6 参考文献

- Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–35.
- 気象庁予報部, 1982:スペクトル法による数値予報(その原理と実際).気象庁, 111pp.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.
- **森口**, 宇田川, 一松編, 1956: 岩波数学公式 I. 岩波書店, 318pp.
- 森口, 宇田川, 一松編, 1960: 岩波数学公式 III. 岩波書店, 310pp.
- 一松 信, 1982:数值解析. 朝倉書店, 163pp.
- 森 正武, 1984:数值解析法. 朝倉書店, 202pp.
- 寺沢寛一,1983:自然科学者のための数学概論(増訂版).岩波書店,711pp.

第3章 モデル全体での時間積分の 概要

本モデルでは、移流過程 (力学過程),放射過程、サブグリッドスケールの乱流混合 過程を考慮して、大気中の変数と惑星表面、土壌中の変数を計算する.本節では、それら様々な過程を用いた時間積分全体の概要を示す.

大気中の変数を ϕ_a ,惑星表面および土壌中の変数を ϕ_s とすると、モデルの支配方 程式系は記号的に下のように書くことができる.

$$\frac{\partial \phi_a}{\partial t} = D(\phi_a) + P_{a,1}(\phi_a, \phi_s) + P_{a,2}(\phi_a)$$
(3.1)

$$\frac{\partial \phi_s}{\partial t} = P_{s,1}(\phi_a, \phi_s) + P_{s,2}(\phi_a) \tag{3.2}$$

ここで、D は移流過程 (力学過程)、による時間変化率である. また、 $P_{a,1}$ 、 $P_{s,1}$ はそれぞれ物理過程 1 (放射過程、鉛直乱流過程)による大気中の変数と惑星表面および土壌中の変数の時間変化率であり、 $P_{a,2}$ 、 $P_{s,2}$ はそれぞれ物理過程 2 (積雲対流過程、非対流性凝結過程、乾燥対流調節)による大気中の変数と惑星表面および土壌中の変数の時間変化率である. $P_{a,1}$ 、 $P_{s,1}$ 、 $P_{a,2}$ 、 $P_{s,2}$ は下のように表現できる.

$$P_{a,1}(\phi_a, \phi_s) = P_{a,1,rad}(\phi_a, \phi_s) + P_{a,1,vdiff}(\phi_a, \phi_s)$$
(3.3)

$$P_{s,1}(\phi_a, \phi_s) = P_{s,1,rad}(\phi_a, \phi_s) + P_{s,1,vdiff}(\phi_a, \phi_s)$$
(3.4)

$$P_{a,2}(\phi_a) = P_{a,2,cum}(\phi_a) + P_{a,2,lsc}(\phi_a) + P_{a,2,dca}(\phi_a)$$
(3.5)

$$P_{s,2}(\phi_a) = P_{s,2,cum}(\phi_a) + P_{s,2,lsc}(\phi_a)$$
(3.6)

ここで、 $P_{a/s,1,rad}$, $P_{a/s,1,vdiff}$, $P_{a/s,2,cum}$, $P_{a/s,2,lsc}$, $P_{a/s,2,dca}$ は, それぞれ放射過程, 鉛直乱流過程, 積雲対流過程, 非対流性凝結過程, 乾燥対流調節過程による大気中 の変数または惑星表面および土壌中の変数の時間変化率である. 物理過程を 1, 2 のふたつに分けているのは、物理過程 2 が「調節型」の物理過程であるためであ り、下に示すように、二段階に分けて積分する.

これらの方程式は、まず移流過程 (力学過程) と物理過程 1 に関して時間積分し、 続いて物理過程 2 について時間積分する.まず、移流過程 (力学過程) と物理過程 1 に関する時間積分は下のように表される.

$$\phi_a^* = \phi_a^{t-\Delta t} + 2\Delta t D(\phi_a^*, \phi_a^t, \phi_a^{t-\Delta t}) + 2\Delta t P_{a,1}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_s^+, \phi_s^{t-\Delta t})$$
(3.7)

$$\phi_s^* = \phi_s^{t-\Delta t} + n\Delta t P_{s,1}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_s^+, \phi_s^{t-\Delta t})$$
(3.8)

ここで、*n*は、 ϕ_s が惑星表面温度、土壌温度の場合には1であり、土壌水分、積雪量の場合には2である¹. また、ここで用いる $P_{a/s,1}(\phi^+, \phi^{t-\Delta t}, \phi^+_s, \phi^{t-\Delta t}_s)$ は、現象の時間スケールが短いため、下のような連立方程式を陰解法を用いて解くことで評価する.

$$\phi_{a}^{+} = \phi_{a}^{t-\Delta t} + 2\Delta t P_{a,1,rad}(\phi_{a}^{+}, \phi_{a}^{t-\Delta t}, \phi_{s}^{+}, \phi_{s}^{t-\Delta t}) + 2\Delta t P_{a,1,vdiff}(\phi_{a}^{+}, \phi_{a}^{t-\Delta t}, \phi_{s}^{+}, \phi_{s}^{t-\Delta t})$$
(3.9)

 $\phi_s^+ = \phi_s^{t-\Delta t} + 2\Delta t P_{s,1,rad}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_a^+, \phi_a^{t-\Delta t}) + 2\Delta t P_{s,1,vdiff}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_a^+, \phi_a^{t-\Delta t})$ (3.10)

続いて、*ϕ*^{*} は「調節型」の物理過程を順次適応することで、下のように更新する.

$$\phi_a^{**} = \phi_a^* + 2\Delta t P_{a,2,cum}(\phi_a^{**}, \phi_a^*) \tag{3.11}$$

$$\phi_a^{***} = \phi_a^{**} + 2\Delta t P_{a,2,lsc}(\phi_a^{***}, \phi_a^{**})$$
(3.12)

$$\phi_a^{t+\Delta t} = \phi_a^{***} + 2\Delta t P_{a,2,dca}(\phi_a^{t+\Delta t}, \phi_a^{***})$$
(3.13)

$$\phi_s^{**} = \phi_s^* + 2\Delta t P_{a,2,cum}(\phi_a^{**}, \phi_a^*) \tag{3.14}$$

$$\phi_s^{t+\Delta t} = \phi_s^{**} + 2\Delta t P_{a,2,lsc}(\phi_a^{t+\Delta t}, \phi_a^{**})$$
(3.15)

なお,惑星表面温度と土壌温度については物理過程 2 で値が変化しないため,上記 の積分は行わずに $\phi^t = \phi^*$ となる.

最後に、Asselin (1972) もしくは Williams (2009) による時間フィルタを適応する. ²

移流過程 (力学過程), 放射過程, 積雲対流, 非対流性凝結, 鉛直乱流混合について は, それぞれ第4, 7, 8, 9, 10 章で述べる. 惑星表面および土壌中の過程については 第12, 13 章で述べる. また, (3.9), (3.10) で示した, 物理過程1 による時間変化率 を求める際の陰解法については第14章で述べる.

¹このように時間積分法が異なるのは,惑星表面温度(と土壌温度)の積分法として,AGCM5の 方法を踏襲しているためである.いずれ再考する必要があるだろう.(YOT,2011/09/06) ²詳細はいずれ(yot,2012/12/24).

第4章 力学過程

4.1 はじめに

この章では力学過程の支配方程式を記し、その支配方程式の離散化を行う、

ここで述べる力学過程とは、流体の支配方程式における外力項を除いた部分を指す. 外力項である放射や鉛直乱流拡散や雲などに関する過程については別紙を参照の こと.

離散化については、空間に関する離散化である鉛直離散化と、水平離散化の方法な らびに時間に関する離散化を行う.

4.2 数理表現

ここでは力学過程の支配方程式系の数理表現を示す.この方程式系の詳細に関しては、Haltiner and Williams (1980) もしくは別紙『支配方程式系の導出に関する 参考資料¹』の『力学過程の支配方程式系の導出』を参照せよ.

4.2.1 連続の式

$$\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}.$$
(4.1)

¹http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm

4.2.2 静水圧の式

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}.\tag{4.2}$$

4.2.3 運動方程式

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathcal{D}(\zeta), \tag{4.3}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_A}{\partial \lambda} + \frac{\partial V_A}{\partial \mu} \right) - \nabla_{\sigma}^2 (\Phi + R\overline{T}\pi + KE) + \mathcal{D}(D).$$
(4.4)

4.2.4 熱力学の式

$$\frac{\partial T}{\partial t} = -\frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial UT'}{\partial \lambda} + \frac{\partial VT'}{\partial \mu} \right) + T'D
- \dot{\sigma} \frac{\partial T}{\partial \sigma} + \kappa T_v \left(\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_\sigma \pi + \frac{\dot{\sigma}}{\sigma} \right) + \frac{Q}{C_p} + \mathcal{D}(T) + \mathcal{D}'(\boldsymbol{v}).$$
(4.5)

4.2.5 水蒸気の式

$$\frac{\partial q}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial Uq}{\partial \lambda} + \frac{\partial Vq}{\partial \mu} \right) + qD - \dot{\sigma} \frac{\partial q}{\partial \sigma} + S_q + \mathcal{D}(q).$$
(4.6)

ここで, 独立変数は以下の通りである.

$$\varphi: \quad \mathbf{\dot{a}}\mathbf{\mathcal{B}} \text{ [deg.]}, \tag{4.7}$$

$$\lambda: \quad \mathbf{\mathcal{E}}\mathbf{\mathcal{E}} \ [\text{deg.}], \tag{4.8}$$

$$\sigma \equiv p/p_s,\tag{4.9}$$

$$t:$$
 時間 [s]. (4.10)

ここで, p は気圧, p_s は地表面気圧である. また $\mu \equiv \sin \varphi$ である.

モデルで時間発展を計算することとなる予報変数は以下の通りである.

$$\pi \ (\varphi, \lambda) \equiv \ln p_s, \tag{4.11}$$

$$T(\varphi,\lambda,\sigma): \quad \mathbf{5}\mathbb{I}[\mathbf{K}], \tag{4.12}$$

$$q (\varphi, \lambda, \sigma): \quad \textbf{L} \mathbb{Z} [\text{kg kg}^{-1}], \tag{4.13}$$

$$\zeta(\varphi,\lambda,\sigma) \equiv \frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial V}{\partial \lambda} - \frac{\partial U}{\partial \mu} \right) : \quad \mathbf{\ddot{B}g} \, [\mathrm{s}^{-1}], \tag{4.14}$$

$$D(\varphi,\lambda,\sigma) \equiv \frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial U}{\partial \lambda} + \frac{\partial V}{\partial \mu} \right) : \quad \mathbf{\mathcal{R}}\mathbf{\mathcal{R}} \ [\mathrm{s}^{-1}]. \tag{4.15}$$

ここで,

$$U(\varphi, \lambda, \sigma) \equiv u(\varphi, \lambda, \sigma) \cos \varphi, \qquad (4.16)$$

$$V(\varphi, \lambda, \sigma) \equiv v(\varphi, \lambda, \sigma) \cos \varphi, \qquad (4.17)$$

u:東西風速, (4.18)

v: 南北風速 (4.19)

である. 流線関数 ψ と速度ポテンシャル χ を導入すると, U, V, ζ, D はそれぞれ以下のように表わされる.

$$U = \frac{1}{a} \left(\frac{\partial \chi}{\partial \lambda} - (1 - \mu^2) \frac{\partial \psi}{\partial \mu} \right), \qquad (4.20)$$

$$V = \frac{1}{a} \left(\frac{\partial \psi}{\partial \lambda} + (1 - \mu^2) \frac{\partial \chi}{\partial \mu} \right), \qquad (4.21)$$

$$\zeta = \nabla^2 \psi, \tag{4.22}$$

$$D = \nabla^2 \chi. \tag{4.23}$$

各時間ステップで診断的に求められる変数は以下の通りである.

$$\Phi \equiv gz: ジオポテンシャル高度 [m2 s-2], \qquad (4.24)$$

$$\dot{\sigma} \equiv \frac{d\sigma}{dt} \equiv \frac{\partial\sigma}{\partial t} + \frac{u}{a\cos\varphi}\frac{\partial\sigma}{\partial\lambda} + \frac{v}{a}\frac{\partial\sigma}{\partial\varphi} + \frac{\partial\sigma}{\partial\sigma}, \qquad (4.25)$$

$$\overline{T}(\sigma): \quad \mathbf{\overline{E}} \mathbf{\overline{E}} \mathbf{\overline{E}} [\mathbf{K}], \tag{4.26}$$

$$T'(\varphi,\lambda,\sigma) \equiv T - \overline{T},\tag{4.27}$$

$$T_v \left(\varphi, \lambda, \sigma\right) \equiv T\left\{1 + \left(\epsilon_v^{-1} - 1\right)q\right\},\tag{4.28}$$

$$T'_{v}(\varphi,\lambda,\sigma) \equiv T_{v} - \overline{T}, \qquad (4.29)$$

$$U_A(\varphi,\lambda,\sigma) \equiv (\zeta+f)V - \dot{\sigma}\frac{\partial U}{\partial\sigma} - \frac{RT'_v}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_\lambda\cos\varphi, \qquad (4.30)$$

$$V_A(\varphi,\lambda,\sigma) \equiv -(\zeta+f)U - \dot{\sigma}\frac{\partial V}{\partial\sigma} - \frac{RT'_v}{a}(1-\mu^2)\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi}\cos\varphi, \qquad (4.31)$$

$$\boldsymbol{v}_{H} \cdot \nabla_{\sigma} \pi \equiv \frac{U}{a(1-\mu^{2})} \frac{\partial \pi}{\partial \lambda} + \frac{V}{a} \frac{\partial \pi}{\partial \mu}$$
(4.32)

$$\nabla_{\sigma}^{2} \equiv \frac{1}{a^{2}(1-\mu^{2})} \frac{\partial^{2}}{\partial\lambda^{2}} + \frac{1}{a^{2}} \frac{\partial}{\partial\mu} \left[(1-\mu^{2}) \frac{\partial}{\partial\mu} \right], \qquad (4.33)$$

$$KE(\varphi,\lambda,\sigma) \equiv \frac{U^2 + V^2}{2(1-\mu^2)}$$
(4.34)

$$\mathcal{D}(\zeta)$$
: 渦度の水平拡散とスポンジ層における散逸, (4.35)

$$\mathcal{D}(D)$$
: 発散の水平拡散とスポンジ層における散逸, (4.36)

 $\mathcal{D}(T)$: 熱の水平拡散, (4.37)

$\mathcal{D}(q):$ 水蒸気の水平拡散, (4.38)

$$\mathcal{F}_{\lambda}(\varphi,\lambda,\sigma)$$
: 小規模運動過程 (経度方向), (4.39)

$$\mathcal{F}_{\varphi}(\varphi,\lambda,\sigma): \qquad \mathbf{h}, \mathbf{h$$

$$Q\left(arphi,\lambda,\sigma
ight):$$
 放射,凝結,小規模運動過程等による加熱・温度変化, $\left(4.41
ight)$

$$S_{q}\left(arphi,\lambda,\sigma
ight)$$
: 凝結,小規模運動過程等による水蒸気ソース, (4.42)

$$\mathcal{D}'(\boldsymbol{v}):$$
 摩擦熱. (4.43)

各水平拡散 (4.35)~(4.38) に関しては 4.2.7 節で説明される. 定数は以下の通りで ある.

$$a: \mathbf{SE} + \mathbf{E} [\mathbf{m}],$$
 (4.44)

$$R:$$
 乾燥大気の気体定数 $[J kg^{-1} K^{-1}],$ (4.45)

$$C_p$$
: 乾燥大気の大気定圧比熱 [J kg⁻¹ K⁻¹], (4.46)

コリオリパラメータ $[s^{-1}]$, f: (4.47)

$$\kappa \equiv R/C_p,\tag{4.48}$$

水蒸気分子量比. (4.49) ϵ_v :

4.2.6 境界条件

鉛直流に関する境界条件は

$$\dot{\sigma} = 0 \quad at \quad \sigma = 0, \ 1. \tag{4.50}$$

である.よって (4.1) から、地表気圧の時間変化式と σ 系での鉛直速度 $\dot{\sigma}$ を求める診断式

$$\frac{\partial \pi}{\partial t} = -\int_0^1 \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma - \int_0^1 D d\sigma, \qquad (4.51)$$

$$\dot{\sigma} = -\sigma \frac{\partial \pi}{\partial t} - \int_0^\sigma D d\sigma - \int_0^\sigma \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma, \qquad (4.52)$$

が導かれる.

4.2.7 水平拡散とスポンジ層

水平拡散とスポンジ層における渦度と発散の散逸は次のように表現する.

$$\mathcal{D}(\zeta) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) + \mathcal{D}_{\mathcal{SL}}(\zeta) \tag{4.53}$$

$$\mathcal{D}(D) = \mathcal{D}_{\mathcal{HD}}(D) + \mathcal{D}_{\mathcal{SL}}(D) \tag{4.54}$$

$$\mathcal{D}(T) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(T) + \mathcal{D}_{\mathcal{SL}}(T) \tag{4.55}$$

$$\mathcal{D}(q) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(q) \tag{4.56}$$

ここで、 $\mathcal{D}_{H\mathcal{D}}, \mathcal{D}_{S\mathcal{L}}$ はそれぞれ水平拡散とスポンジ層における散逸を表す.

水平拡散項は、次のように ∇^{N_D} の形で計算する.

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] \zeta, \qquad (4.57)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(D) = -K_{HD} \left[(-1)^{N_D/2} \nabla^{N_D} - \left(\frac{2}{a^2}\right)^{N_D/2} \right] D, \qquad (4.58)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(T) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} T, \qquad (4.59)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(q) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} q.$$
(4.60)

小さなスケールに選択的な水平拡散を表すため、慣例として N_D には $4\sim 16$ を用 いることが多い.

スポンジ層における運動量の散逸項は、東西平均成分を減衰させる場合とさせない 場合の2通りの計算法を導入する.東西平均成分も減衰させる場合には、

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M \zeta, \tag{4.61}$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M D, \tag{4.62}$$

となる. ここで, γ_M はスポンジ層における運動量の減衰係数である. 東西平均成分を減衰させない場合には,

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M(\zeta - \bar{\zeta}), \qquad (4.63)$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M(D - \bar{D}), \qquad (4.64)$$

となる.ここで、一は、東西平均を表す.

スポンジ層内の温度擾乱の減衰には以下の項を導入する.

$$\mathcal{D}_{\mathcal{SL}}(T) = -\gamma_H(T - \bar{T}), \qquad (4.65)$$

ここで、 γ_H はスポンジ層における温度擾乱の減衰係数である.

減衰係数 γ_M , γ_H の σ 依存性に一般形はないが, depam では下のような σ 依存性 を考慮する.

$$\gamma_M = \begin{cases} \gamma_{M,0} \left(\frac{\sigma_0}{\sigma}\right)^{N_{SL}}, & (\sigma \le \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(4.66)

$$\gamma_{H} = \begin{cases} \gamma_{H,0} \left(\frac{\sigma_{0}}{\sigma}\right)^{N_{SL}}, & (\sigma \leq \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(4.67)

ここで、 $\gamma_{M,0}$ 、 $\gamma_{H,0}$ 、 N_{SL} 、 σ_{lim} はそれぞれ、 $\sigma = \sigma_0$ における減衰係数、 σ 依存性の指数、スポンジ層の下限の σ である、dcpam では、 σ_0 はモデル最上層の σ としている、

4.2.8 水平拡散係数の値を決めるための判断材料

水平拡散係数 K_{HD} の値は問題に応じて試行錯誤して決めることになる.

判断規準の1つは、エネルギースペクトル

$$\mathcal{E}_n = \frac{1}{4} \frac{a^2}{n(n+1)} \sum_{m=-n}^n (|\tilde{\zeta}_n^m|^2 + |\tilde{D}_n^m|^2)$$
(4.68)

において (このエネルギースペクトルの表式は Koshyk and Hamiltion, 2001 による), 高波数領域におけるエネルギーの急激な減衰やエネルギーの蓄積が現れない ようにするということである.

考え方の一つとして、高波数領域におけるエネルギースペクトルが $n^{-5/3}$ の指数則 に従っていれば良かろう、と判断することもできるだろう. Takahashi et al. (2006) は AFES を用いて地球大気に関する高分解能計算を行い、200hPa における運動エ ネルギーのスペクトルが低波数領域 (およそ n < 80) では n^{-3} の指数則に、高波 数領域では $n^{-5/3}$ 則に従う水平拡散係数の値を決定している. かれらは水平拡散 のオペレータとして $K_{HD}\nabla^4$ を用いた場合 ($N_D = 4$ とした場合に対応する) につ いて、T79L24、T159L24、T319L24、T639L24、T639L48 と分解能を変更した計算を 行った. その結果、拡散係数の値としては

$$K_H = 1.2 \times 10^{21} n_t^{-3.22} \quad [\text{m}^4 \text{ sec}^{-1}] \tag{4.69}$$

を与えるのが良いとしている. ここで, *n_t* は切断波数である. この式から, 各種の 水平分解能に応じて *K_{HD}* の値とモデルで表現される最小スケールの減衰率を計 算すると 表 4.1 となる.

切断波数	$K_H (\mathrm{m}^4 \mathrm{sec}^{-1})$	減衰率 (1/days)	減衰時間 (day)
T21	7×10^{16}	0.7	1.4
T42	7×10^{15}	1.2	0.8
T79	9×10^{14}	1.9	0.5
T159	1×10^{14}	3.2	0.3
T319	1×10^{13}	5.6	0.2
T639	1×10^{12}	9.6	0.1

表 4.1: Takahashi et al. (2006)の結果から得られた水平拡散係数の値と最小ス ケールの減衰率. $N_D = 4$ とした場合の結果を示す. ただし, T21 と T42 の計算は Takahashi et al. (2006)ではなされていない. 減衰率は $K_{HD}\left\{\frac{n(n+1)}{a^2}\right\}^2$ を用い て計算した.

更に、Takahashi et al. (2006) は、水蒸気無し・地形無しの設定のもとで Held and Suarez 実験 (Held and Suarez, 1994) も行っている. この場合、T639L24 とした時 に高波数域におけるエネルギースペクトルが指数則に従うようにするためには上 式で与えられる K_{HD} の値の 0.5 倍を使うのが良いという結果を得た.

このように、エネルギースペクトルが指数則に従うようにするためには、分解能と 実験設定に応じて試行錯誤で拡散係数を決定する必要がある.その際には、上記の 数値を目安として用いるのが良いだろう.

4.3 離散表現:鉛直離散化

ここでは支配方程式を鉛直方向に離散化する. Arakawa and Suarez(1983) に従って, (4.1)~(4.6) を鉛直方向に差分によって離散化する. 各方程式の離散化表現は 次のようになる.

4.3.1 連続の式,鉛直速度

$$\frac{\partial \pi}{\partial t} = -\sum_{k=1}^{K} (D_k + \boldsymbol{v}_k \cdot \nabla \pi) \Delta \sigma_k, \qquad (4.70)$$

$$\dot{\sigma}_{k-1/2} = -\sigma_{k-1/2} \frac{\partial \pi}{\partial t} - \sum_{l=k}^{K} (D_l + \boldsymbol{v}_l \cdot \nabla \pi) \Delta \sigma_l \qquad (k = 2, \cdots, K), \qquad (4.71)$$

$$\dot{\sigma}_{1/2} = \dot{\sigma}_{K+1/2} = 0. \tag{4.72}$$

ここで,

$$\boldsymbol{v}_k \cdot \nabla \pi = \frac{U_k}{a(1-\mu^2)} \frac{\partial \pi}{\partial \lambda} + \frac{V_k}{a(1-\mu^2)} (1-\mu^2) \frac{\partial \pi}{\partial \mu}.$$
(4.73)

4.3.2 静水圧の式

$$\Phi_{1} = \Phi_{s} + C_{p}(\sigma_{1}^{-\kappa} - 1)T_{v,1}$$

= $\Phi_{s} + C_{p}\alpha_{1}T_{v,1}.$ (4.74)

$$\Phi_{k} - \Phi_{k-1} = C_{p} \left[\left(\frac{\sigma_{k-1/2}}{\sigma_{k}} \right)^{\kappa} - 1 \right] T_{v,k} + C_{p} \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}} \right)^{\kappa} \right] T_{v,k-1}$$

$$= C_{p} \alpha_{k} T_{v,k} + C_{p} \beta_{k-1} T_{v,k-1}.$$
(4.75)

ここで,

$$\alpha_k = \left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1, \qquad (4.76)$$

$$\beta_k = 1 - \left(\frac{\sigma_{k+1/2}}{\sigma_k}\right)^{\kappa},\tag{4.77}$$

$$\Phi_s = g z_s \tag{4.78}$$

であり, *z*_s は地表面高度である.

4.3.3 運動方程式

$$\frac{\partial \zeta_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_{A,k}}{\partial \lambda} - \frac{\partial U_{A,k}}{\partial \mu} \right) + \mathcal{D}(\zeta_k),$$

$$\frac{\partial D_k}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_{A,k}}{\partial \lambda} + \frac{\partial V_{A,k}}{\partial \mu} \right) - \nabla^2_{\sigma} (\Phi_k + C_p \hat{\kappa}_k \overline{T}_k \pi + (KE)_k) + \mathcal{D}(D_k).$$
(4.80)

ここで,

$$U_{A,1} = (\zeta_1 + f)V_1 - \frac{1}{2\Delta\sigma_1}\dot{\sigma}_{3/2}(U_1 - U_2) - \frac{C_p\hat{\kappa}_1 T'_{v,1}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,1}\cos\varphi,$$

$$U_{A,k} = (\zeta_k + f)V_k - \frac{1}{2\Delta\sigma_k}[\dot{\sigma}_{k-1/2}(U_{k-1} - U_k) + \dot{\sigma}_{k+1/2}(U_k - U_{k+1})]$$

$$- \frac{C_p\hat{\kappa}_k T'_{v,k}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,k}\cos\varphi, \qquad (k = 2, \cdots, K-1)$$

$$U_{A,K} = (\zeta_K + f)V_K - \frac{1}{2\Delta\sigma_K}\dot{\sigma}_{K-1/2}(U_{K-1} - U_K) - \frac{C_p\hat{\kappa}_K T'_{v,K}}{a}\frac{\partial\pi}{\partial\lambda} + \mathcal{F}_{\lambda,K}\cos\varphi, \qquad (4.81)$$

$$V_{A,1} = -(\zeta_{1} + f)U_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(V_{1} - V_{2}) - \frac{C_{p}\hat{\kappa}_{1}T_{v,1}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,1}\cos\varphi,$$

$$V_{A,k} = -(\zeta_{k} + f)U_{k} - \frac{1}{2\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(V_{k-1} - V_{k}) + \dot{\sigma}_{k+1/2}(V_{k} - V_{k+1})]$$

$$- \frac{C_{p}\hat{\kappa}_{k}T_{v,k}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,k}\cos\varphi, \qquad (k = 2, \cdots, K - 1)$$

$$V_{A,K} = -(\zeta_{K} + f)U_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(V_{K-1} - V_{K})$$

$$- \frac{C_{p}\hat{\kappa}_{K}T_{v,K}'}{a}(1 - \mu^{2})\frac{\partial\pi}{\partial\mu} + \mathcal{F}_{\varphi,K}\cos\varphi,$$
(4.82)

$$\hat{\kappa}_{k} = \frac{\sigma_{k-1/2}(\sigma_{k-1/2}^{\kappa} - \sigma_{k}^{\kappa}) + \sigma_{k+1/2}(\sigma_{k}^{\kappa} - \sigma_{k+1/2}^{\kappa})}{\sigma_{k}^{\kappa}(\sigma_{k-1/2} - \sigma_{k+1/2})}$$

$$= \frac{\sigma_{k-1/2}\alpha_{k} + \sigma_{k+1/2}\beta_{k}}{\Delta\sigma_{k}},$$
(4.83)

$$T'_{v,k} = T_{v,k} - \overline{T}_k, \tag{4.84}$$

$$(KE)_k = \frac{U_k^2 + V_k^2}{2(1 - \mu^2)}.$$
(4.85)

4.3.4 熱力学の式

$$\frac{\partial T_k}{\partial t} = -\frac{1}{a\cos\varphi} \left(\frac{1}{1-\mu^2} \frac{\partial U_k T'_k}{\partial \lambda} + \frac{\partial V_k T'_k}{\partial \mu} \right) + H_k + \frac{Q_k}{C_p} + \mathcal{D}(T_k) + \mathcal{D}'(\boldsymbol{v}).$$
(4.86)

ここで,

$$\begin{split} H_{k} &\equiv T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}} [\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ &+ \left\{ \alpha_{k} \left[\sigma_{k-1/2}\boldsymbol{v}_{k} \cdot \nabla\pi - \sum_{l=k}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \right] \right\} \frac{1}{\Delta\sigma_{k}} T_{\boldsymbol{v},\boldsymbol{k}} \\ &= T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}} [\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ &+ \hat{\kappa}_{k}\boldsymbol{v}_{k} \cdot \nabla\pi T_{\boldsymbol{v},\boldsymbol{k}} \\ &- \alpha_{k} \sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \\ &- \beta_{k} \sum_{l=k+1}^{K} (D_{l} + \boldsymbol{v}_{l} \cdot \nabla\pi) \Delta\sigma_{l} \frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \quad (k = 1, \cdots, K-1), \end{split}$$

$$\begin{aligned} H_{K} &\equiv T_{K}^{\prime}D_{K} - \frac{1}{\Delta\sigma_{K}} [\dot{\sigma}_{K-1/2}(\hat{T}_{K-1/2} - T_{K}) + \dot{\sigma}_{K+1/2}(T_{K} - \hat{T}_{K+1/2})] \\ &+ \hat{\kappa}_{K}\boldsymbol{v}_{K} \cdot \nabla\pi T_{\boldsymbol{v},K} \\ &- \alpha_{K} (D_{K} + \boldsymbol{v}_{K} \cdot \nabla\pi) \Delta\sigma_{K} \frac{T_{\boldsymbol{v},K}}{\Delta\sigma_{K}} \end{aligned}$$

であり,

$$\hat{T}_{k-1/2} = \frac{\left[\left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1\right]\sigma_{k-1}^{\kappa}T_k + \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}}\right)^{\kappa}\right]\sigma_k^{\kappa}T_{k-1}}{\sigma_{k-1}^{\kappa} - \sigma_k^{\kappa}} \\ = a_k T_k + b_{k-1}T_{k-1} \qquad (k = 2, \cdots, K),$$

$$\hat{T}_{1/2} = 0,$$

$$\hat{T}_{K+1/2} = 0,$$
(4.88)

$$a_k = \alpha_k \left[1 - \left(\frac{\sigma_k}{\sigma_{k-1}} \right)^{\kappa} \right]^{-1}, \qquad (4.89)$$

$$b_k = \beta_k \left[\left(\frac{\sigma_k}{\sigma_{k+1}} \right)^{\kappa} - 1 \right]^{-1}.$$
(4.90)

4.3.5 水蒸気の式

$$\frac{\partial q_k}{\partial t} = -\frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial U_k q_k}{\partial \lambda} + \frac{\partial V_k q_k}{\partial \mu} \right) + R_k + S_{q,k} + \mathcal{D}(q_k).$$
(4.91)

ここで,

$$R_{1} = q_{1}D_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(q_{1} - q_{2}),$$

$$R_{k} = q_{k}D_{k} - \frac{1}{2\Delta\sigma_{k}}\left[\dot{\sigma}_{k-1/2}(q_{k-1} - q_{k}) + \dot{\sigma}_{k+1/2}(q_{k} - q_{k+1})\right], \qquad (k = 2, \cdots, K - 1)$$

$$R_{K} = q_{K}D_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(q_{K-1} - q_{K}).$$

$$(4.92)$$

4.3.6 鉛直差分に関する補足

2

Arakawa and Suarez (1983) による鉛直差分の取り方に関して, 説明を追加して おく.

Arakawa and Suarez (1983) の鉛直差分式は以下の特徴を持つ.

- ・ 圧力勾配項の鉛直積分を地形に沿った閉曲線に沿って線積分すると0になる (Arakawa and Suarez, 1983 は循環が0になるという書き方をしている) これは運動方程式の圧力勾配項に関する条件である.(地形無しの場合には角 運動量が保存することを意味する).
- 熱エネルギーと運動エネルギーとの変換項の有限差分近似は運動エネルギーの式でも熱エネルギーの式でも同じ形をとる。

²(2011-09-07 石渡) この節はまだ編集中である.

- ・ θ の全球質量積分(?)が断熱過程で保存されることが保証されている(保存, が指す具体的な内容は? flux form に準拠した差分式になっている,で正しい?)
- 静水圧の式から得られる最下層の層厚は local な形をしている
- 静水圧の式の差分形は鉛直方向にエントロピー一様な大気において正確な形をしている。
- *p*_{top} = 0, 3 次元等エントロピー大気の場合 (*T* = *a* + *b*(*p*/*p*₀)^κ の場合?) には, 圧力勾配項は正確な形になっている.
- しかし, θ の関数の global mass integral は断熱過程で保存されない.

4.3.7 鉛直レベルの決め方

3

AGCM5 では, L16 の設定として以下のものが使われてきた.

4.4 離散表現:水平離散化

ここでは支配方程式を水平離散化する.水平方向の離散化はスペクトル変換法を 用いる (Bourke, 1988). 非線形項は格子点上で計算する.各方程式のスペクトル表 現は以下のようになる.スペクトル表現に関する記号の意味については 2.5 節を参 照されたい.その詳細については第 B 章を参照せよ.なお,簡単化のため,部分的 に鉛直方向添字 k を省略する.

4.4.1 連続の式

$$\frac{\partial \tilde{\pi}_n^m}{\partial t} = -\sum_{k=1}^K (\tilde{D}_n^m)_k \Delta \sigma_k + \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J Z_{ij} Y_n^{m*}(\lambda_i, \mu_j) w_j.$$
(4.93)

³(2011-02-22 石渡) この節はまだ編集中である.

k	$\sigma_{k+1/2}$
0	1
1	0.990
2	0.970
3	0.930
4	0.870
5	0.790
6	0.700
7	0.600
8	0.500
9	0.410
10	0.330
11	0.260
12	0.200
13	0.150
14	0.100
15	0.050
16	0.000

表 4.2: AGCM5 の L16 計算で習慣的に使われてきた鉛直格子点の位置. $\sigma_{k+1/2}$ は 半整数グリッドにおける σ 座標値. ここで,

$$Z \equiv -\sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k}. \tag{4.94}$$

4.4.2 運動方程式

$$\frac{\partial \tilde{\zeta}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im V_{A,ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} + \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} U_{A,ij}(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} + \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\zeta}_{n}^{m}, \\
\frac{\partial \tilde{\mathcal{D}}_{n}^{m}}{\partial t} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{A,ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} - \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{A,ij}(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} - \frac{n(n+1)}{a^{2}} \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} (KE)_{ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j} + \frac{n(n+1)}{a^{2}} (\Phi_{n}^{m} + C_{p} \hat{\kappa}_{k} \bar{T}_{k} \pi_{n}^{m}) + \tilde{\mathcal{D}}_{M,n}^{m} \tilde{\mathcal{D}}_{n}^{m}.$$
(4.95)

ここで,

$$\tilde{\mathcal{D}}_{M,n}^{m} = -K_{HD} \left[\left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \left(\frac{2}{a^2} \right)^{N_D/2} \right] - \tilde{\gamma}_{M,k,n}^{m}, \quad (4.97)$$

$$\tilde{\gamma}_{M,k,n}^{m} = \begin{cases} \tilde{\gamma}_{M,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0. & (k < k_{SLlim}) \end{cases}$$
(4.98)

ここで, k_{SLlim} はスポンジ層を適応する下限の k である. また, スポンジ層において東西平均成分も減衰させる場合には, $\tilde{\gamma}_{M,0,n}^m = \gamma_{M,0}$ であり, 東西平均成分を減衰させない場合には,

$$\tilde{\gamma}_{M,0,n}^{m} = \begin{cases} \gamma_{M,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(4.99)

である.

なお、dcpam では、 K_{HD} は、打ち切り波数成分の減衰時定数 (1/e になる時間)、 τ_{HD} 、 を用いて与える⁴. つまり、

$$K_{HD} = \frac{1}{\tau_{HD}} \left\{ \frac{N(N+1)}{a^2} \right\}^{-N_D/2}$$
(4.100)

である.

4.4.3 熱力学の式

$$\frac{\partial \tilde{T}_{n}^{m}}{\partial t} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{ij} T_{ij}' Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{ij} T_{ij}'(1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(H_{ij} + \frac{Q_{ij}}{C_{p}} \right) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j} \\
+ \tilde{\mathcal{D}}_{H,n}^{m} \tilde{T}_{n}^{m} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \mathcal{D}_{ij}'(v) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j}.$$
(4.101)

ここで,

$$\tilde{\mathcal{D}}_{H,n}^{m} = -K_{HD} \left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2} - \tilde{\gamma}_{H,k,n}^{m}.$$
(4.102)

$$\tilde{\gamma}_{H,k,n}^{m} = \begin{cases} \tilde{\gamma}_{H,0,n}^{m} \left(\frac{\sigma_{K}}{\sigma_{k}}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0, & (k < k_{SLlim}) \end{cases}$$
(4.103)

$$\tilde{\gamma}_{H,0,n}^{m} = \begin{cases} \gamma_{H,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(4.104)

である.

4正確には、温度擾乱の減衰時定数である....からも明らかのように、運動方程式の水平拡散項には、全角運動量を保存するための項が加わるため、 τ_{HD} は 1/eになる時間にはならない.

4.4.4 水蒸気の式

$$\frac{\partial \tilde{q}_{n}^{m}}{\partial t} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} im U_{ij} q_{ij} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} V_{ij} q_{ij} (1-\mu_{j}^{2}) \frac{\partial}{\partial \mu} Y_{n}^{m*}(\lambda_{i}, \mu_{j}) \frac{w_{j}}{a(1-\mu_{j}^{2})} \\
+ \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} (R_{ij} + S_{q,ij}) Y_{n}^{m*}(\lambda_{i}, \mu_{j}) w_{j} \\
+ \tilde{\mathcal{D}}_{q,n}^{m} \tilde{q}_{n}^{m}.$$
(4.105)

ここで,

$$\tilde{\mathcal{D}}_{q,n}^{m} = -K_{HD} \left\{ -\frac{n(n+1)}{a^2} \right\}^{N_D/2}$$
(4.106)

である.

4.5 離散表現:時間離散化

ここでは時間積分スキームについて記す.

時間差分には、複数の方法を組み合わせて用いる.用いる方法の概要を以下に示す.

- 力学過程
 - 水平拡散およびスポンジ層における減衰項には、後方差分を用いる.
 - その他の項には, leap frog 法と Crank-Nicolson 法を組み合わせた semiimplicit 法 (Bourke, 1988) を用いる.
- 物理過程
 - 予報型の物理過程には,前方差分を用いる.
 - 調節型の物理過程は, semi-implicit 法での力学過程積分後に計算された 値を用いて計算する.
- 時間フィルタ

- 力学過程、物理過程のすべての計算後に、力学過程で用いている leap frog
 法を起源とする計算モード抑制のための、Asselin (1972) による時間フィ
 ルター、または Williams (2009) による時間フィルタを適応する.

この方法は、予報変数を A と表すと、以下の式で表現される.

$$\frac{\hat{\mathcal{A}}^{t+\Delta t} - \bar{\mathcal{A}}^{t-\Delta t}}{2\Delta t} = \frac{1}{2} \left\{ \dot{\mathcal{A}}_{dyn,G} \left(\bar{\mathcal{A}}^{t-\Delta t} \right) + \dot{\mathcal{A}}_{dyn,G} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) \right\} + \dot{\mathcal{A}}_{dyn,NG} \left(\mathcal{A}^{t} \right) + \dot{\mathcal{A}}_{dyn,dis} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + \dot{\mathcal{A}}_{phy,pred} \left(\bar{\mathcal{A}}^{t-\Delta t} \right), \quad (4.107)$$

$$\mathcal{A}^{t+\Delta t} = \hat{\mathcal{A}}^{t+\Delta t} + 2\Delta t \dot{\mathcal{A}}_{fric} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + 2\Delta t \dot{\mathcal{A}}_{phy,adj} \left(\hat{\mathcal{A}}^{t+\Delta t} \right), \qquad (4.108)$$

これに続いて適用する Asselin (1972) による時間フィルタは下のように表される:

$$\bar{\mathcal{A}}^{t} = \mathcal{A}^{t} + \epsilon_{f} \left(\bar{\mathcal{A}}^{t-\Delta t} - 2\mathcal{A}^{t} + \mathcal{A}^{t+\Delta t} \right).$$
(4.109)

また、Williams (2009) による時間フィルタは下のように表される: ⁵ ここで、 $\dot{A}_{dyn,G}$ 、 $\dot{A}_{dyn,NG}$ はそれぞれ、力学過程において semi-implicit 法で分離さ れた重力波項 (線型項) と非重力波項 (非線型項)、 $\dot{A}_{dyn,dis}$ は水平拡散とスポンジ 層における減衰項、 $\dot{A}_{phy,pred}$ は予報型の物理過程項である. \dot{A}_{fric} 、 $\dot{A}_{phy,adj}$ は、それ ぞれ摩擦熱による加熱項および調節型の物理過程項である. ϵ_f は時間フィルタの 係数であり、dcpam での標準値は 0.05 としている.

4.5.1 力学過程の方程式系の時間差分式

まず、semi-implicit 法を用いるために、方程式系を $T = \overline{T}_k$ である静止場に基づい て線形重力波項とそれ以外の項に分離する. 鉛直方向のベクトル表現 $A = \{A_k\}$, および行列表現 $\underline{A} = \{A_{kl}\}$ を用いると、連続の式、発散方程式、熱力学の式は、

$$\frac{\partial \tilde{\pi}_n^m}{\partial t} = \left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \tilde{\boldsymbol{D}}_n^m, \qquad (4.110)$$

$$\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{D}}_{n}^{m}}{\partial t}\right)^{\mathrm{NG}} - \left(-\frac{n(n+1)}{a^{2}}\right) \left(\tilde{\boldsymbol{\Phi}}_{s,n}^{m} + \underline{W}\tilde{\boldsymbol{T}}_{n}^{m} + \boldsymbol{G}\tilde{\boldsymbol{\pi}}_{n}^{m}\right) + \underline{\tilde{\mathcal{D}}_{M}}_{n}^{m}\tilde{\boldsymbol{D}}_{n}^{m},$$
(4.111)

⁵未だ書いていない (yot, 2012/12/24).
$$\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{T}}_{n}^{m}}{\partial t}\right)^{\mathrm{NG}} - \underline{h}\tilde{\boldsymbol{D}}_{n}^{m} + \underline{\tilde{\mathcal{D}}_{H}}_{n}^{m}\tilde{\boldsymbol{T}}_{n}^{m}$$
(4.112)

となる⁶. $(\overset{m}{)_n}$ や $[\overset{m}{]_n}$ といった表記については 2.5 節の (2.10), (2.15), (2.17) を 参照のこと. ここで、添字 NG の付いた項は、非重力波項であり、以下のように表 される.

$$\left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\rm NG} = \tilde{Z}_n^m,\tag{4.113}$$

$$\left(\frac{\partial \tilde{D}_{k,n}^{m}}{\partial t}\right)^{\mathrm{NG}} = \frac{1}{a} \left(\left[\frac{1}{1-\mu^{2}} \underbrace{\partial U_{A,ijk}}{\partial \lambda}\right]_{n}^{m} + \left[\frac{\partial \widetilde{V_{A,ijk}}}{\partial \mu}\right]_{n}^{m} \right) - \left(-\frac{n(n+1)}{a^{2}}\right) \left[(KE)_{k} + \sum_{l=1}^{K} W_{kl}(T_{v,l} - T_{l})\right]_{n}^{m}, \quad (4.114)$$

$$\left(\frac{\partial \tilde{T}_{k,n}^{m}}{\partial t}\right)^{\text{NG}} = -\frac{1}{a} \left(\left[\frac{1}{1-\mu^{2}} \underbrace{\partial \tilde{U}_{ijk} T'_{ijk}}_{\partial \lambda}\right]_{n}^{m} + \left[\frac{\partial \tilde{V}_{ijk} T'_{ijk}}{\partial \mu}\right]_{n}^{m} \right) + [\widetilde{H_{ijk}}]_{n}^{m}.$$
(4.115)

6
念のため注記しておくと、 $ilde{m{\Phi}}^m_{s,n}=\left(ilde{\Phi}^m_{s,n}, ilde{\Phi}^m_{s,n},\cdots, ilde{\Phi}^m_{s,n}
ight)$ である.

各項は以下の通りである。 簡単化のため経度,緯度方向添字 *i*,*j* の表記を省略する。

$$Z = -\sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k}, \qquad (4.116)$$

$$H_{k} = T_{k}^{K} D_{k}$$

$$-\frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} \left(\hat{T}'_{k-1/2} - T_{k}^{\prime} \right) + \dot{\sigma}_{k+1/2} \left(T_{k}^{\prime} - \hat{T}'_{k+1/2} \right) \right]$$

$$-\frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2}^{NG} \left(\hat{T}_{k-1/2} - \overline{T}_{k} \right) + \dot{\sigma}_{k+1/2}^{NG} \left(\overline{T}_{k} - \hat{\overline{T}}_{k+1/2} \right) \right]$$

$$+ \hat{\kappa}_{k} T_{v,k} \boldsymbol{v}_{k} \cdot \nabla \pi$$

$$-\frac{\alpha_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}^{\prime} \sum_{l=k}^{K} D_{l} \Delta \sigma_{l} \right]$$

$$-\frac{\beta_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k+1}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}^{\prime} \sum_{l=k+1}^{K} D_{l} \Delta \sigma_{l} \right] \qquad (k = 1, \cdots, K-1),$$

$$H_{K} = T_{K}^{\prime} D_{K}$$

$$-\frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} \left(\hat{T}'_{K-1/2} - T_{K}^{\prime} \right) + \dot{\sigma}_{K+1/2} \left(T_{K}^{\prime} - \hat{T}'_{K+1/2} \right) \right]$$

$$-\frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2}^{NG} \left(\hat{T}_{K-1/2} - \overline{T}_{K} \right) + \dot{\sigma}_{K+1/2}^{NG} \left(\overline{T}_{K} - \hat{T}_{K+1/2} \right) \right]$$

$$+ \hat{\kappa}_{K} T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi$$

$$-\frac{\alpha_{K}}{\Delta \sigma_{K}} \left[T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi \Delta \sigma_{K} + T_{v,K}^{\prime} D_{K} \Delta \sigma_{K} \right],$$

$$(4.117)$$

$$\dot{\sigma}_{k-1/2}^{\mathrm{NG}} = -\sigma_{k-1/2} \left(\frac{\partial \pi}{\partial t}\right)^{\mathrm{NG}} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l}$$

$$= \sigma_{k-1/2} \sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l},$$
(4.118)

$$\hat{T}'_{k-1/2} = \begin{cases} 0, & (k=1) \\ \hat{T}_{k-1/2} - \hat{\overline{T}}_{k-1/2}, & (k=2,\cdots,K) \\ 0, & (k=K+1) \end{cases}$$
(4.119)

$$\hat{\overline{T}}_{k-1/2} = \begin{cases} 0, & (k=1) \\ a_k \overline{T}_k + b_{k-1} \overline{T}_{k-1}, & (k=2,\cdots,K) \\ 0. & (k=K+1) \end{cases}$$
(4.120)

 α

(1 101)

また、重力波項のベクトルおよび行列は以下のとおりである.

$$C_k = \Delta \sigma_k, \tag{4.121}$$

$$W_{kl} = C_p \alpha_l \delta_{k \ge l} + C_p \beta_l \delta_{k-1 \ge l}, \tag{4.122}$$

$$G_k = \hat{\kappa}_k C_p T_k, \tag{4.123}$$

$$\underline{h} = \underline{QS} - \underline{R},\tag{4.124}$$

$$Q_{kl} = \frac{1}{\Delta\sigma_k} (\hat{\overline{T}}_{k-1/2} - \overline{T}_k) \delta_{k=l} + \frac{1}{\Delta\sigma_k} (\overline{T}_k - \hat{\overline{T}}_{k+1/2}) \delta_{k+1=l}, \qquad (4.125)$$

$$S_{kl} = \sigma_{k-1/2} \Delta \sigma_l - \Delta \sigma_l \delta_{k \le l}, \tag{4.126}$$

$$R_{kl} = -\left(\frac{\alpha_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k\le l} + \frac{\beta_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k+1\le l}\right)\overline{T}_k,\tag{4.127}$$

$$(\tilde{\mathcal{D}}_{M,kl})_{n}^{m} = -K_{HD} \left[\left(\frac{-n(n+1)}{a^{2}} \right)^{N_{D}/2} - \left(\frac{2}{a^{2}} \right)^{N_{D}/2} \right] \delta_{k=l} -\gamma_{M,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}} \right)^{N_{SL}} \delta_{k=l} \delta_{k\geq k_{SLlim}}.$$

$$(4.128)$$

$$(\tilde{\mathcal{D}}_{H,kl})_{n}^{m} = -K_{HD} \left(\frac{-n(n+1)}{a^{2}}\right)^{N_{D}/2} \delta_{k=l} -\gamma_{H,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}}\right)^{N_{SL}} \delta_{k=l} \delta_{k\geq k_{SLlim}}.$$
(4.129)

 $\delta_{k < l}$ は, $k \leq l$ が成り立つとき 1, そうでないとき 0 となる関数である. なお、渦度方程式には線型重力波項がないため、ここでは示さない.7 これらの方程式に,

水平拡散とスポンジ層における減衰項には後退差分

• その他の項には, leap frog 法と中心差分を組み合わせた semi-implicit 法

を適応すると、

$$\delta_t \tilde{\pi}_n^m = \left(\frac{\partial \tilde{\pi}_n^m}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \overline{\boldsymbol{\tilde{D}}_n^m}^t, \qquad (4.130)$$

$$\delta_t \tilde{\boldsymbol{D}}_n^m = \left(\frac{\partial \tilde{\boldsymbol{D}}_n^m}{\partial t}\right)^{\mathrm{NG}} - \left(-\frac{n(n+1)}{a^2}\right) \left(\tilde{\boldsymbol{\Phi}}_{s,n}^m + \underline{W}\overline{\tilde{\boldsymbol{T}}_n^m}^t + \boldsymbol{G}\overline{\tilde{\pi}_n^m}^t\right) + \underline{\tilde{\mathcal{D}}_{M_n}}^m \tilde{\boldsymbol{D}}_n^{m,t+\Delta t},$$
(4.131)

⁷ここは本当は方程式を書くべきだろう.後で書く.(YOT, 2009/10/11)

$$\delta_t \tilde{\boldsymbol{T}}_n^m = \left(\frac{\partial \tilde{\boldsymbol{T}}_n^m}{\partial t}\right)^{\text{NG}} - \underline{h} \overline{\tilde{\boldsymbol{D}}_n^m}^t + \underline{\tilde{\mathcal{D}}_H}_n^m \tilde{\boldsymbol{T}}_n^{m,t+\Delta t}.$$
(4.132)

となる. ただし,

$$\delta_t \mathcal{A} \equiv \frac{1}{2\Delta t} \left(\mathcal{A}^{t+\Delta t} - \mathcal{A}^{t-\Delta t} \right), \qquad (4.133)$$

$$\overline{\mathcal{A}}^{t} \equiv \frac{1}{2} \left(\mathcal{A}^{t+\Delta t} + \mathcal{A}^{t-\Delta t} \right) = \mathcal{A}^{t-\Delta t} + \delta_{t} \mathcal{A} \Delta t.$$
(4.134)

である.

$$(4.130), (4.131), (4.132) \& \mathfrak{U}, \overline{\tilde{D}_{n}^{m^{t}}} \Vdash \mathcal{O} \mathsf{N} \mathsf{C} \mathfrak{B} \mathfrak{P} \mathfrak{F} \mathfrak{S} \mathcal{E}, \\ \left[(\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{M_{n}}}^{m}) - (\Delta t)^{2} \left(-\frac{n(n+1)}{a^{2}} \right) \left\{ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m})^{-1} \underline{h} + \mathbf{G} \mathbf{C}^{T} \right\} \right] \overline{\tilde{D}_{n}^{m^{t}}} \\ = (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{M_{n}}}^{m}) \widetilde{D}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \widetilde{D}_{n}}{\partial t} \right)^{\mathrm{NG}} \\ - \Delta t \left(-\frac{n(n+1)}{a^{2}} \right) \left[\widetilde{\Phi}_{s,n}^{m} \right. \\ \left. + \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m})^{-1} \left\{ (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{H_{n}}}^{m}) \widetilde{T}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \widetilde{T}_{n}}{\partial t} \right)^{\mathrm{NG}} \right\} \\ \left. + \mathbf{G} \left\{ \tilde{\pi}_{n}^{m,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\pi}_{n}^{m}}{\partial t} \right)^{\mathrm{NG}} \right\} \right]$$

$$(4.135)$$

となる. ここで <u>I</u> は単位行列, C^T は C の転置ベクトルである. (4.135) を $\overline{\tilde{D}_n^m}^t$ に ついて解き,

$$\tilde{\boldsymbol{D}}_{n}^{m,t+\Delta t} = 2\overline{\tilde{\boldsymbol{D}}_{n}^{m}}^{t} - \tilde{\boldsymbol{D}}_{n}^{m,t-\Delta t}$$
(4.136)

および, (4.130), (4.132) により $\hat{\mathcal{A}}^{t+\Delta t}$ が求められる.

4.6 参考文献

Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–35.

basic equations.tex(dynamics/dyn-references.tex)

- Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.
- Bourke, W.P., 1988: Spectral methods in global climate and weather prediction models. *Physically-Based Modelling and Simulation of Climates and Climatic Change. Part I.*, M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 169–220.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.
- Held, I. M. and Suarez, M. J., 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circuation models. *Bull. Am. Meteor. Soc.*, **75**, 1825–1830.
- Koshyk, J. N. and Hamiltion, K., 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratospheremesosphere GCM. J. Atmos. Sci., 58, 329–348.
- Takahashi, Y. O., Hamilton, K., Ohfuchi, W., 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. *Geophys. Res. Lett.*, 33, L12812, doi:10.1029/2006GL026429.
- Williams, P. D., 2009: A proposed modification to the Robert-Asselin time filter, Mon. Wea. Rev., 137, 2538–2546.
- 石岡 圭一, 2004: スペクトル法による数値計算入門. 東京大学出版会, 232pp.

第5章 物質移流

5.1 はじめに

本章ではセミラグランジュ法による物質移流の計算手順について述べる.本章で 述べるのは,物質混合比qの移流方程式を解く,非保存型のセミラグランジュ法で ある.

一般に,非保存型セミラグランジュ法では,

1. 時刻 $t + \Delta t$ で格子点上にくる流体粒子の,時刻 t での位置(上流点)を求め,

2. その位置の時刻 t での q の値を補間計算で求め,

それを時刻 $t + \Delta t$ での格子点での値とする計算を行う. すなわち,計算手順は上流点探索と補間に分けられる.

セミラグランジュ法を3次元で一度に解こうとすると上流点探索も補間計算も,非 常に複雑になり計算コストが増大する.このため,DCPAMでは方向分離という 手法を用いている.すなわち水平方向の物質移流を計算し,その分布を用いて鉛 直方向の移流計算を行う.

なお,セミラグランジュ法の一般的な利点のひとつは CFL 条件を超えて時間刻み 幅を大きくとれることである.しかし,DCPAM では他の力学や放射などの計算 と合わせるために,CFL 条件を超えた時間刻み幅を用いることはない (2013 年 1 月現在).

5.2 移流方程式の数理表現

大気密度を ρ とするとき,単位体積中に含まれる物質の質量の時間変化は

$$\frac{\partial \rho q}{\partial t} = -\nabla \cdot (\boldsymbol{v}\rho q) + S \tag{5.1}$$

で表される.ただし,tは時間,vは流速を表し,Sは生成・消滅項である.物質の生成・消滅を考えない場合,(5.1)式と ρ の時間変化式

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\boldsymbol{v}\rho) \tag{5.2}$$

から, qの時間変化式(移流方程式)が得られる.

$$\frac{\partial q}{\partial t} = -\boldsymbol{v} \cdot \nabla q \tag{5.3}$$

5.3 上流点探索

DCPAM の時間積分はリープフロッグ法であるため,時刻 $t + \Delta t$ (A; After)の混合比を求めるために,t (N; Now)および $t - \Delta t$ (B; Before)の情報を用いることが出来る.このため,BからAまで間の平均流速場をNの流速場で近似して,上流点を探索する(Williamson and Rasch, 1989).すなわち,時刻Aに格子点 x_A^G に流れてくる流体粒子の時刻Nでの位置を x_N (中間点),時刻Bでの位置を x_B (上流点)とすると,これらは次式を満たす.

$$\boldsymbol{x}_A^G = \boldsymbol{x}_N + \Delta t \boldsymbol{v}_N(\boldsymbol{x}_N) \tag{5.4}$$

$$\boldsymbol{x}_A^G = \boldsymbol{x}_B + 2\Delta t \boldsymbol{v}_N(\boldsymbol{x}_N) \tag{5.5}$$

ー般に x_N , x_B は格子点上の位置ではないので, (5.4) 式を満たす $x_N \geq v_N(x_N)$ を補間の繰り返し計算(イタレーション)によって求める. $v_N(x_N)$ が求まれば, (5.5)式より上流点 x_B が求められる.

5.3.1 水平

水平方向の上流点探索は u_N , v_N に対して2次元ラグランジュ3次補間を繰り返し 行う.すなわち,中間点位置の現在推定値 (λ_N, ϕ_N) での水平流速 $u_N(\lambda_N, \phi_N)$, $u_N(\lambda_N, \phi_N)$ を2次元ラグランジュ3次補間で求め,(5.4)式を出来るだけ満たすように推定値を修正していく.

なお , 2 次元ラグランジュ 3 次補間とは , 補間したい座標 (λ_N, ϕ_N) を取り囲む 16 グリッドでの値を用いて , 多項式

$$f(\lambda \phi) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{i,j} \lambda^{i} \phi^{j}$$

で分布を近似し,係数 $a_{i,j}$ を求めて,補間値 $f(\lambda_N \phi_N)$ を求める方法である.

5.3.2 鉛直

鉛直方向の上流点探索はより単純で, $\dot{\sigma}_N$ に対して1次元ラグランジュ3次補間を繰り返す.

5.4 混合比補間

5.4.1 水平

球面上の高精度な補間方法として,スペクトル双3次補間 (Enomoto,2008) が知られている.これは,球面調和関数変換を利用して,混合比分布のグリッド上の空間微分値 $q_{\lambda}, q_{\phi}, q_{\lambda\phi}$ を求め,補間したい座標 ($\lambda_B \phi_B$)の周囲4点での $q, q_{\lambda}, q_{\phi}, q_{\lambda\phi}$ の情報から多項式

$$f(\lambda \ \phi) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{i,j} \lambda^{i} \phi^{j}$$
(5.6)

の係数 $a_{i,j}$ を求めて,補間値 $f(\lambda_B \phi_B)$ を求める方法である.この方法の特徴は, 微分値をスペクトル変換を利用して求めている点であり,このために精度の高い 補間が可能になっている.

DCPAM では,上述の方法を発展させた方向分離型スペクトル変則エルミート5 次補間で混合比の水平方向の補間計算を行う.

basic `equations.tex(sltt/sltt.tex)

方向分離

双3次補間では補間したい座標の周囲の混合比分布を多項式 (5.6) で近似して,周 囲4グリッド上の計16個の情報から16個の係数 *a_{i,j}* を求めていた.これは,16元 の連立方程式を解くことに相当する.

ところが,以下ように経度方向と緯度方向の補間を分離することで,より簡便に 補間することができる.ここで,補間したい座標を $(\lambda_B \phi_B)$,その周囲の4グリッドの座標を $(\lambda_i \phi_j)$, $(\lambda_{i+1} \phi_j)$, $(\lambda_i \phi_{j+1})$, $(\lambda_{i+1} \phi_{j+1})$ とする.

- 1. $(\lambda_i \phi_j) \geq (\lambda_{i+1} \phi_j) \perp oq_i q_\lambda$ を用いて,経度方向の1次元エルミート3次補間により座標 $(\lambda_B \phi_j)$ でのqを求める.
- 2. $(\lambda_i \phi_j) \geq (\lambda_{i+1} \phi_j) \perp o q_{\phi} q_{\lambda\phi} \in \mathcal{A}_{h}$ を用いて,補間により座標 $(\lambda_B \phi_j) \circ o q_{\phi} \in \mathcal{A}_{h}$ 求める.
- 3. $(\lambda_i \phi_{j+1}) \ge (\lambda_{i+1} \phi_{j+1}) \bot oq_{q_\lambda}$ を用いて,補間により座標 $(\lambda_B \phi_{j+1})$ での qを求める.
- 4. $(\lambda_i \phi_{j+1}) \geq (\lambda_{i+1} \phi_{j+1}) \perp o q_{\phi} , q_{\lambda\phi}$ を用いて,補間により座標 $(\lambda_B \phi_{j+1})$ で $o q_{\phi}$ を求める.
- 5. 上の 1-4 で求めた $q(\lambda_B \phi_j)$, $q_{\phi}(\lambda_B \phi_j)$, $q(\lambda_B \phi_{j+1})$, $q_{\phi}(\lambda_B \phi_{j+1})$ を用いて, 緯度方向にエルミート 3 次補間を行えば, $q(\lambda_B \phi_B)$ が求められる.

この方法も双3次補間と同じく周囲4グリッド上の計16個の情報を用いており, 補間の精度は同じになる.一方で,方向分離することで,計算式やコードが簡単 になるため高速化しやすくなる.さらに各補間ごとに任意のフィルタ処理を施す ことが可能となる(後述).

 $q_1, q_{x1}, q_2, q_{x2} \rightarrow q_a$ $q_{y1}, q_{xy1}, q_{y2}, q_{xy2} \rightarrow q_{ya}$ $q_3, q_{x3}, q_4, q_{x4} \rightarrow q_b$ $q_{y3}, q_{xy3}, q_{y4}, q_{xy4} \rightarrow q_{yb}$ $q_a, q_{ya}, q_b, q_{yb} \rightarrow q_T$

図 5.1: 方向分離の模式図.Tは補間したい座標を表す.

なお,エルミート3次補間とは1次元の補間方法であり,補間したい座標の周囲 2点の値と空間微分値の計4個の情報から補間多項式

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

の係数 a_i を求めて,補間値を求める方法である.

ラグランジュ補間が補間多項式の次数を上げるために,より広い範囲のグリッド 値を用いるのに対して,エルミート補間は補間多項式の次数を上げるために,よ り高階の空間微分値を利用する.

変則エルミート5次補間

DCPAM では混合比補間では補間多項式を5次の多項式として,補間精度を上げる.通常の1次元エルミート5次補間は補間したい座標の周囲2点のq, q_x , q_{xx} と,空間2階微分まで必要となる.そして,これを上述の方向分離の方法で2次元の補間を行うためには,q, q_λ , q_ϕ , $q_{\lambda\lambda}$, $q_{\lambda\phi}$, $q_{\lambda\phi\phi}$, $q_{\lambda\lambda\phi\phi}$, $q_{\lambda\lambda\phi\phi}$ と計算すべき微分値が大幅に増えてしまう.

そこで,次のような変則エルミート5次補間を用いる.つまり,補間したい座標の 周囲2点のq,q_xに加え,それぞれもうひとつ外側のグリッドのqの値を用いる.

一般的なエルミート5次補間			変則エルミート5次補間			
	x →	-			×	→
q .	q		\dot{q}	\dot{q}	q	\dot{q}
q_x	q_x			q_x	q_x	
q_{xx}	q_{xx}					

図 5.2: 一般的なエルミート 5 次補間と変則エルミート 5 次補間 . × 印が補間した い座標を表す.

以下に具体的な計算手順を,格子点が等間隔の場合(経度)と不等間隔(緯度,鉛 直)の場合に分けて述べる.

等間隔格子の場合 補間したい座標のすぐ左側 (座標が減少する側) の点の座標を 原点として,座標を取り直すと,周囲4点の座標は $x = -\Delta x$,0, Δx , $2\Delta x$ であ る.いま,補間多項式 f(x)を

$$f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

とすると,その導関数 g(x) は

$$g(x) = 5a_5x^4 + 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1$$

となる.既知の値は $f(-\Delta x)$, f(0), $f(\Delta x)$, $f(2\Delta x)$, g(0), $g(\Delta x)$ なので, 以下の連立方程式が成り立つ.

$$f(-\Delta x) = -a_5 \Delta x^5 + a_4 \Delta x^4 - a_3 \Delta x^3 + a_2 \Delta x^2 - a_1 \Delta x + a_0$$
(5.7)

$$f(0) = a_0 \tag{5.8}$$

$$f(\Delta x) = a_5 \Delta x^5 + a_4 \Delta x^4 + a_3 \Delta x^3 + a_2 \Delta x^2 + a_1 \Delta x + a_0$$
(5.9)

$$f(2\Delta x) = 32a_5\Delta x^5 + 16a_4\Delta x^4 + 8a_3\Delta x^3 + 4a_2\Delta x^2 + 2a_1\Delta x + a_0$$
(5.10)

$$g(0) = a_1 \tag{5.11}$$

$$g(\Delta x) = 5a_5\Delta x^4 + 4a_4\Delta x^3 + 3a_3\Delta x^2 + 2a_2\Delta x + a_1$$
(5.12)

式 (5.8) と (5.11) より, a_0 , a_1 は自明なので,上記の方程式系は実質的には4元連立方程式である.

演算(5.9)-(5.7)から

$$f(\Delta x) - f(-\Delta x) = 2a_5 \Delta x^5 + 2a_3 \Delta x^3 + 2a_1 x$$
(5.13)

演算 (5.10)-4×(5.9) から

$$f(2\Delta x) - 4f(\Delta x) = 28a_5\Delta x^5 + 12a_4\Delta x^4 + 4a_3\Delta x^3 - 2a_1\Delta x - 3a_0 \qquad (5.14)$$

演算 $\Delta x \times (5.12) - 2 \times (5.9)$ から

$$\Delta xg(\Delta x) - 2f(\Delta x) = 3a_5 \Delta x^5 + 2a_4 \Delta x^4 + a_3 \Delta x^3 - a_1 \Delta x - 2a_0 \tag{5.15}$$

演算(5.14)-6×(5.15)から

$$f(2\Delta x) + 8f(\Delta x) - 6\Delta xg(\Delta x) = 10a_5\Delta x^5 - 2a_3\Delta x^3 + 4a_1\Delta x + 9a_0$$
(5.16)

演算(5.13)+(5.16)から

$$f(2\Delta x) + 9f(\Delta x) - f(-\Delta x) - 6\Delta xg(\Delta x) = 12a_5\Delta x^5 + 6a_1\Delta x + 9a_0 \quad (5.17)$$

これより

$$a_{5} = \frac{1}{12\Delta x^{5}} \left[f(2\Delta x) + 9f(\Delta x) - f(-\Delta x) - 6\Delta x g(\Delta x) - 6a_{1}\Delta x - 9a_{0} \right]$$
(5.18)

と, a_5 が求まる.数値計算なので, a_5 を計算した後は,これを既知の値として,他の係数を求めるために使うことができる.すなわち a_3 は式 (5.13)より,

$$a_{3} = \frac{1}{2\Delta x^{3}} \left[f(\Delta x) - f(-\Delta x) - 2a_{5}\Delta x^{5} - 2a_{1}\Delta x \right]$$
(5.19)

同様にして,式(5.15)より

$$a_4 = \frac{1}{2\Delta x^4} \left[\Delta x g(\Delta x) - 2f(\Delta x) - 3a_5 \Delta x^5 - a_3 \Delta x^3 + a_1 \Delta x + 2a_0 \right]$$
(5.20)

そして,演算(5.9)+(5.7)で得られる式より

$$a_{2} = \frac{1}{2\Delta x^{2}} \left[f(\Delta x) + f(-\Delta x) - 2a_{4}\Delta x^{4} - 2a_{0} \right]$$
(5.21)

が得られる.以上の計算により係数 a_iを求めたのち,次式で補間値を求める.

$$f(\xi) = a_5\xi^5 + a_4\xi^4 + a_3\xi^3 + a_2\xi^2 + a_1\xi + a_0$$
(5.22)

ここで $x = \xi$ が補間したい場所の座標である.

不等間隔格子の場合 補間したい座標のすぐ左側 (座標が減少する側)の点の座標 を原点として,座標を取り直し,周囲4点の座標を $x = \Delta x_{21}$,0, Δx_{23} , Δx_{24} と表 す.ここで $\Delta x_{21} < 0$ であることに注意したい.不等間隔格子の場合も原理的には, 等間隔格子のときと同様に4元連立方程式を解けばよいのだが,そのまま解こうと すると式が煩雑になる.そこで, Δx_{23} が大きさ1になるように,座標変換を施す. 変換後の座標をXで表すと,X = r,0,1,tである.ただし, $r \equiv \Delta x_{21}/\Delta x_{23}$, $t \equiv \Delta x_{24}/\Delta x_{23}$ とする.

いま,補間多項式 F(X) を

$$F(X) = a_5 X^5 + a_4 X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0$$

とすると,その導関数 G(X) は

$$G(X) = 5a_5X^4 + 4a_4X^3 + 3a_3X^2 + 2a_2X + a_1$$

となる.既知の値は $F(r) = f(\Delta x_{21})$, F(0) = f(0), $F(1) = f(\Delta x_{23})$, $F(t) = f(\Delta x_{24})$ および, $G(0) = g(0)\Delta x_{23}$, $G(1) = g(\Delta x_{23})\Delta x_{23}$ である.変換により座標が伸縮したために,元々の空間微分値に Δx_{23} をかけている.

(5.8) と (5.11) に対応する自明な式は次のように書かれる.

$$a_0 = f(0)$$
$$a_1 = g(0)\Delta x_{23}$$

さらに

$$F_1 \equiv F(r) - a_0 - a_1 r$$

$$F_3 \equiv F(1) - a_0 - a_1$$

$$F_4 \equiv F(t) - a_0 - a_1 t$$

$$G_3 \equiv G(1) - a_1$$

と置けば, 解くべき連立方程式は

$$a_5 + a_4 + a_3 + a_2 = F_3 \tag{5.23}$$

$$a_5r^5 + a_4r^4 + a_3r^3 + a_2r^2 = F_1 ag{5.24}$$

$$a_5t^5 + a_4t^4 + a_3t^3 + a_2t^2 = F_4 \tag{5.25}$$

$$5a_5 + 4a_4 + 3a_3 + 2a_2 = G_3 \tag{5.26}$$

となる.この連理方程式の数値解は

$$a_{5} = \frac{F_{1}}{(r-1)^{2}r^{2}(r-t)} - \frac{G_{3}}{(t-1)^{2}t^{2}(r-t)} - \frac{[4+2rt-3(r+t)]F_{4}}{(r-1)^{2}(t-1)^{2}} + \frac{G_{3}}{(r-1)(t-1)}$$
(5.27)

$$a_{4} = -\frac{(t+2)F_{3}}{((r-1)^{2}r^{2}(r-t))} + \frac{(r+2)F_{4}}{(t-1)^{2}t^{2}(r-t)} + \frac{[5-3(r^{2}+rt+t^{2})+2rt(r+t)]F_{3}}{(r-1)^{2}(t-1)^{2}} - \frac{(r+t+1)G_{3}}{(r-1)(t-1)}$$
(5.28)

$$a_3 = -2F_3 + 1 - 3a_5 - 2a_4 \tag{5.29}$$

$$a_2 = F_3 - a_5 - a_4 - a_3 \tag{5.30}$$

で計算できる.補間値は次式で求められる.

$$F(\Xi) = a_5 \Xi^5 + a_4 \Xi^4 + a_3 \Xi^3 + a_2 \Xi^2 + a_1 \Xi + a_0$$
(5.31)

ここで $X = \Xi = \xi / \Delta x_{23}$ が補間したい場所の座標である.

2次元補間をする場合は,補間したい座標の周囲16グリッドでの混合比とその空間微分値から,方向分離の方法を用いて図5.3のように1次元補間を7回行うことで求められる(図5.3).この際,緯度方向の補間を最後に行うことで,より計算コストの高い不等間隔格子での補間回数を最少限に抑えられる.

5.4.2 鉛直

鉛直方向の混合比補間にも変則エルミート5次補間を用いる.ただし鉛直の場合, スペクトル変換を利用した微分計算が出来ないので,4次精度の中央差分法で微 分値を計算する.この際,鉛直グリッドは一般に不等間隔格子なので,注意が必 要である.

2013/10/08(地球流体電脳倶楽部)

 $\begin{array}{l} q_{1}, q_{2}, q_{x2}, q_{3}, q_{x3}, q_{4} \rightarrow q_{a} \\ q_{5}, q_{6}, q_{x6}, q_{7}, q_{x7}, q_{8} \rightarrow q_{b} \\ q_{y5}, q_{y6}, q_{xy6}, q_{y7}, q_{xy7}, q_{y8} \rightarrow q_{yb} \\ q_{9}, q_{10}, q_{x10}, q_{11}, q_{x11}, q_{12} \rightarrow q_{c} \\ q_{y9}, q_{y10}, q_{xy10}, q_{y11}, q_{xy11}, q_{y12} \rightarrow q_{yc} \\ q_{13}, q_{14}, q_{x14}, q_{15}, q_{x15}, q_{16} \rightarrow q_{d} \\ q_{a}, q_{b}, q_{yb}, q_{c}, q_{yc}, q_{d} \rightarrow q_{T} \end{array}$

図 5.3: 変則エルミート5次補間の方向分離による2次元補間の模式図.Tは補間 したい座標を表す.緯度方向は不等間隔格子になるので注意が必要.

不等間隔格子の4次精度中央差分

不等間隔格子の4次精度中央差分の計算には,微分値を計算したい点とその上下2点,計5点の情報は必要となる.これら5点の座標をそれぞれ $\sigma_{k-2} \sigma_{k-1} \sigma_k \sigma_{k+1} \sigma_{k+2}$ とする.さらに以下のように格子点間隔を定義する.

$$s_1 \equiv \sigma_k - \sigma_{k-1}$$
$$t_1 \equiv \sigma_{k+1} - \sigma_k$$
$$s_2 \equiv \sigma_k - \sigma_{k-2}$$
$$t_2 \equiv \sigma_{k+2} - \sigma_k$$

次の4次のオーダーまでのテイラー展開を考える(簡単のため $f(\sigma_k) = f_k$ とする.)

$$f_{k+1} = f_k + t_1 f'_k + \frac{t_1^2}{2} f''_k + \frac{t_1^3}{6} f'''_k + \frac{t_1^4}{24} f'''_k$$
(5.32)

$$f_{k-1} = f_k - s_1 f'_k + \frac{s_1^2}{2} f''_k - \frac{s_1^3}{6} f'''_k + \frac{s_1^4}{24} f'''_k$$
(5.33)

$$f_{k+2} = f_k + t_2 f'_k + \frac{t_2^2}{2} f''_k + \frac{t_2^3}{6} f'''_k + \frac{t_2^4}{24} f'''_k$$
(5.34)

$$f_{k-2} = f_k - s_2 f'_k + \frac{s_2^2}{2} f''_k - \frac{s_2^3}{6} f'''_k + \frac{s_2^4}{24} f'''_k$$
(5.35)

演算 $s_1^2 imes (5.32) - t_1^2 imes (5.33)$ より

$$f_{k+1}s_1^2 - f_k(s_1^2 - t_1^2) - f_{k-1}t_1^2 = f'_k s_1 t_1(s_1 + t_1) + \frac{s_1^2 t_1^2(s_1 + t_1)}{6} f'''_k + \frac{s_1^2 t_1^2(t_1^2 - s_1^2)}{24} f''''_k$$
変形して

$$f'_{k} = F_{11} - \frac{s_{1}t_{1}}{6}f'''_{k} - \frac{s_{1}t_{1}(t_{1} - s_{1})}{24}f'''_{k}$$
(5.36)

basic equations.tex(sltt/sltt.tex)

ただし,

$$F_{11} \equiv \frac{f_{k+1}s_1^2 - f_k(s_1^2 - t_1^2) - f_{k-1}t_1^2}{s_1t_1(s_1 + t_1)}$$
(5.37)

となる.同様にして,演算 $s_2^2 \times (5.34) - t_2^2 \times (5.35)$ より

$$f'_{k} = F_{22} - \frac{s_{2}t_{2}}{6}f'''_{k} - \frac{s_{2}t_{2}(t_{2} - s_{2})}{24}f'''_{k}$$
(5.38)

ただし,

$$F_{22} \equiv \frac{f_{k+2}s_2^2 - f_k(s_2^2 - t_2^2) - f_{k-2}t_2^2}{s_2 t_2(s_2 + t_2)}$$
(5.39)

が得られる.演算
 $s_2 t_2 \times (5.36) - s_1 t_1 \times (5.39)$ により

$$f'_{k}(s_{2}t_{2}-s_{1}t_{1}) = F_{11}s_{2}t_{2} - F_{22}s_{1}t_{1} - \frac{s_{1}t_{1}s_{2}t_{2}(t_{1}-s_{1}-t_{2}+s_{2})}{24}f''''_{k}$$
(5.40)

が得られる.

また , 演算 $s_2^2 \times (5.32) - t_1^2 \times (5.35)$ より

$$f'_{k} = F_{21} - \frac{s_{2}t_{1}}{6}f'''_{k} - \frac{s_{2}t_{1}(t_{1} - s_{2})}{24}f'''_{k}$$
(5.41)

ただし,

$$F_{21} \equiv \frac{f_{k+1}s_2^2 - f_k(s_2^2 - t_1^2) - f_{k-2}t_1^2}{s_2t_1(s_2 + t_1)}$$
(5.42)

さらに , 演算 $s_1^2{\times}(5.33){-}t_2^2{\times}(5.34)$ より

$$f'_{k} = F_{12} - \frac{s_{1}t_{2}}{6}f'''_{k} - \frac{s_{1}t_{2}(t_{2} - s_{1})}{24}f'''_{k}$$
(5.43)

ただし,

$$F_{12} \equiv \frac{f_{k+2}s_1^2 - f_k(s_1^2 - t_2^2) - f_{k-1}t_2^2}{s_1 t_2(s_1 + t_2)}$$
(5.44)

を得る.演算
 $s_1t_2 \times (5.42) - s_2t_1 \times (5.44)$ により

$$f'_{k}(s_{1}t_{2}-s_{2}t_{1}) = F_{21}s_{1}t_{2} - F_{12}s_{2}t_{1} - \frac{s_{1}t_{1}s_{2}t_{2}(t_{1}-s_{2}-t_{2}+s_{1})}{24}f'''_{k}$$
(5.45)

が得られる.ここで,

r₁ = t₁ - s₁ - t₂ + s₂, r₂ = t₁ - s₂ - t₂ + s₁
(ただし, r₁, r₂
$$\neq$$
 0) とすれば, 演算 r₂×(5.40)-r₁×(5.45) より
 $f'_{k} [(s_{2}t_{2} - s_{1}t_{1})r_{2} - (s_{1}t_{2} - s_{2}t_{1})r_{1}] = (F_{11}s_{2}t_{2} - F_{22}s_{1}t_{1})r_{2} - (F_{21}s_{1}t_{2} - F_{12}s_{2}t_{1})r_{1}$
(5.46)

よって

$$f'_{k} = \frac{(F_{11}s_{2}t_{2} - F_{22}s_{1}t_{1})r_{2} - (F_{21}s_{1}t_{2} - F_{12}s_{2}t_{1})r_{1}}{(s_{2}t_{2} - s_{1}t_{1})r_{2} - (s_{1}t_{2} - s_{2}t_{1})r_{1}}$$
(5.47)

が不等間隔格子の4次精度の中央差分式になる.

なお,鉛直格子が等間隔の場合 $2s_1 = 2t_1 = s_2 = t_1$ なので, $r_1 = r_2 = 0$ となり,式 (5.47) は不定形になる.この場合,式 (5.40) は

$$3s_1^2 f_k' = 4F_{11}s_1^2 - F_{22}s_1^2$$

になるので,

$$f'_{k} = \frac{4F_{11} - F_{22}}{3} = \frac{-f_{k+2} + 8f_{k+1} - 8f_{k-1} + f_{k-2}}{12s_1}$$

が4次精度の中央差分式になる.

5.4.3 上下端境界

上下端付近の計算には上下端の向こうに鏡像関係にある仮想点をおいて計算している. すなわち $q(\sigma_0) = q(\sigma_1)$, $q(\sigma_{-1}) = q(\sigma_2)$, $q(\sigma_{\text{kmax}+1}) = q(\sigma_{\text{kmax}})$, $q(\sigma_{\text{kmax}+2}) = q(\sigma_{\text{kmax}-1})$ となるように配列を拡張して計算している.

ただし,上流点が最上層 (q は半整数グリッド上で定義されている)よりも上になった場合には,補間値としては最上層の値 $q(\sigma_{kmax})$ をそのまま使用する.同様に,上流点が最下層よりも下になった場合には,補間値として最下層の値 $q(\sigma_1)$ をそのまま使用する.

5.5 単調フィルタ

変則エルミート5次補間によって急峻な混合比分布でも精度よく補間できる一方 で,補間多項式の次数が高いために,分布が平坦な箇所では人工的な短波(振動) が生じやすくなる.また,微分値の計算にスペクトル変換を利用しているために, ギブス現象に由来する人工的な短波も発生してしまう.このため,混合比分布に 人工的な極大・極小が生じて,移流スキームに求められる「単調性」が損なわれ てしまう.

このような人工的な短波を除去するために, Sun et al.(1996)の単調フィルタを一部修正して用いる.

basic equations.tex(sltt/sltt.tex)

5.5.1 Sun et al. (1996) フィルタ

1次元で考え,補間した値を q_T ,補間した場所の両側 4 点の値を q_1 , q_2 , q_3 , q_4 とする.また, q分布の全領域の最大値 / 最小値を大域的最大値 (q_{GMax}) / 最小値 (q_{GMin}) と呼び, $q_2 \ge q_3$ のうち大きい方を局所的最大値 (q_{LMax}),小さい方を局所的最小値 (q_{LMin}) と呼ぶ.このとき,

- 1. $(q_2 q_1)(q_4 q_3) \ge 0$ の場合
 - もし $q_T < q_{\text{LMin}}$ ならば, q_T を q_{LMin} で置換える
 - もし $q_T > q_{\text{LMax}}$ ならば, q_T を q_{LMax} で置換える
- 2. $(q_2 q_1)(q_4 q_3) < 0$ の場合
 - もし $q_T < q_{\text{LGin}}$ ならば , q_T を q_{GMin} で置換える
 - もし $q_T > q_{\text{GMax}}$ ならば, q_T を q_{GMax} で置換える

とするのが Sun et al. (1996)の単調フィルタである.

このフィルタによって,人工的な短波が除去できる.しかし,上の2.の処理によって,混合比分布の最大値が徐々に減少したり,最小値が増加する副作用がある.

そこで DCPAM では, 上の2.の処理は行わず,1.のみ実行する.こうすることで, 混合比分布の最大(小)値が減少(増加)せずにすむ.ところが,今度は逆にオーバー シュート,アンダーシュートの効果で最大値が増加したり,最小値が減少しうる. 特に,最小値だアンダーシュートによって負の値になることが大きな問題になる. なぜなら,混合比は非負で定義される量であり,負の混合比は物理的にあり得な いからである.

5.5.2 Arcsine 変換フィルタ

そこで,非負を保証するためのフィルタとして,Arcsine 変換を利用する (Kashimura et al, 2013). n + 1 ステップ目の移流計算を行う前に,混合比 q_n を次式に従い変数変換する.

$$Q_n = \frac{1}{2} \operatorname{arcsin} \left(\frac{2q_n}{\alpha q_n^{\max}} - 1 \right); \quad -\frac{\pi}{4} \le Q_n \le \frac{\pi}{4}$$
(5.48)

図 5.4: Arcsine 変換 (5.4). 横軸が q で縦軸が Q.

ここで, q_n^{\max} は q_n の最大値を表し, α は1以上の定数とする. Q_n の分布をもとに 上流点で補間計算をして Q_{n+1} を求め,以下の逆変換により q_{n+1} を求める.

$$q_{n+1} = \frac{\alpha q_n^{\max}}{2} \left[\sin(2Q_{n+1}) + 1 \right]$$
 (5.49)

以上の手続きにより q の非負性が担保される.補間計算の結果, Q_{n+1} が (5.48) の 不等式を満たさなくても,逆変換 (5.49) により, $0 \le q_{n+1} \le \alpha q_n^{\max}$ になるからで ある (図 5.4).

上述の変換を施すことで,図 5.4 において傾きの変化率が大きいq = 0, αq^{\max} 付近では,逆拡散の効果が働く(矢部他,2003). q^{\max} 付近の歪みは $\alpha = 1.05$ 程度とすることで抑制できる(DCPAMでは $\alpha = 1.05$ としている). q = 0付近では通常,補間操作に伴う数値拡散が強いため,変換による逆拡散性は数値拡散を抑えるように働く.

上述の Arcsine 変換と Sun et al. フィルタの一部を併用することで,非負性を担保しながら,人工的な短波を除去することが出来る.

5.6 ネームリストによる制御

本章で述べたセミラグランジュ法による物質移流スキームに関係するネームリス ト変数を以下に記す .

dynamics_hspl_vas83_nml		
变数名	デフォルト値	備考
FlagSLTT	.false.	セミラグスキーム使用フラグ
altt nml		
FlagSLTTArcsine	.true.	Arcsine 変換フィルタ使用フラグ
SLTTIntHor	"HQ"	水平補間法*
SLTTIntVer	"HQ"	鉛直補間法*

*HQ: エルミート5次補間, HC: エルミート3次補間.

参考文献

- Enomoto, T.: Bicubic interpolation with spectral derivatives, SOLA, 4, pp. 5–8, 2008.
- Kashimura, H., T. Enomoto, Y. O. Takahashi: Non-negative filter using arcsine transformation for tracer advection with semi-Lagrangian scheme, NCTAM, 62, 2013.
- Sun, W.-Y., K.-S. Yeh, and R.-Y. Sun: A simple semi-Lagrangian scheme for advection equations, QJRMS, 122, pp. 1211–1226, 1996.
- Williamson, D. L., and Rasch, P. J.: Two-dimensional semi-Lagrangian transport with shape-preserving interpolation, Mon. Wea. Rev., 117, pp. 102– 129, 1989
- 矢部孝, 内海隆行, 尾形陽一: CIP 法—原子から宇宙スケールまでを解くマル チスケール解法, 森北出版, 2003.

第6章 物理過程で用いる予備変数

6.1 はじめに

物理過程の演算においては、しばしば鉛直層の境界における温度や、鉛直層の境界 や中心の高度が必要となる.ここでは、それらの計算方法を示す.

6.2 離散表現

6.2.1 鉛直層境界における温度

注: この節の内容のコードとの対応は確認していない. というより, コードの内容 がわかりにくい.

層の境界における温度は、下のように計算することにする. $1 \le k \le k_{max} - 1$ のとき、

$$T_{k+\frac{1}{2}} = \alpha_{k+\frac{1}{2}}T_k + \beta_{k+\frac{1}{2}}T_{k+1}$$

$$\log \sigma_{k+1} = \log \sigma_{k+1}$$
(6.1)

$$\alpha_{k+\frac{1}{2}} = \frac{\log \sigma_{k+\frac{1}{2}} - \log \sigma_{k+1}}{\log \sigma_k - \log \sigma_{k+1}}$$
(6.2)

$$\beta_{k+\frac{1}{2}} = \frac{\log \sigma_k - \log \sigma_{k+\frac{1}{2}}}{\log \sigma_k - \log \sigma_{k+1}}$$
(6.3)

とし, k = 0 のとき,

$$T_{\frac{1}{2}} = T_1 \tag{6.4}$$

$$T_{k_{max}+\frac{1}{2}} = T_{k_{max}} \tag{6.5}$$

とする. $1 \le k \le k_{max} - 1$ の場合の表現は、気圧に対する対数的な線型内挿である.

6.2.2 鉛直層中心と境界における高度

層の中心における高度は、下のように計算することにする.

$$z_1 = z_s + \frac{R}{g} T_1 (1 - \sigma_1)$$
(6.6)

$$z_{k} = z_{k-1} + \frac{R}{g} T_{k-\frac{1}{2}} \frac{\sigma_{k-1} - \sigma_{k}}{\sigma_{k-\frac{1}{2}}}$$
(6.7)

一方,層の境界における高度は、下のように計算することにする.

$$z_{\frac{1}{2}} = z_s \tag{6.8}$$

$$z_{k+\frac{1}{2}} = z_{k-\frac{1}{2}} + \frac{R}{g} T_k \frac{\sigma_{k-\frac{1}{2}} - \sigma_{k+\frac{1}{2}}}{\sigma_k}$$
(6.9)

第7章 放射

7.1 はじめに

ここでは放射モデルについて述べる.まず初めに,基本となる加熱率,散乱のない 場合の放射伝達方程式,散乱を考慮した放射伝達方程式について述べる.その後に, 地球流体電脳倶楽部 AGCM5 で標準として用いられていた放射モデル,地球大気 用放射モデルのそれぞれに特有の点について述べる.

7.2 数理表現: 共通部分

7.2.1 加熱率

放射過程による加熱率は下のように表現される.

$$Q = -\frac{1}{C_p \rho} \frac{\partial F}{\partial z} \tag{7.1}$$

$$= \frac{g}{C_p} \frac{\partial F}{\partial p} \tag{7.2}$$

$$F = F_L + F_S \tag{7.3}$$

ここで, F_L , F_S はそれぞれ長波放射フラックスと短波放射フラックスである. このように, ほとんどの場合には長波放射と短波放射は別々に扱われる.

7.2.2 散乱を無視した場合の放射伝達方程式

考える波数帯における透過率は別途何らかの方法で与えられるとすると、散乱を無 視した場合の放射伝達方程式は下のように書くことができる。

$$F(\tau) = F^{+}(\tau) - F^{-}(\tau)$$
(7.4)

$$F(\tau)^{+} = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_{\tau}^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(7.5)

$$F(\tau)^{-} = \int_{0}^{\tau} \pi B(\tau') \frac{d\mathcal{T}(\tau,\tau')}{d\tau'} d\tau'$$
(7.6)

ここで、Bはプランク関数、あるいはその積分値であり、 \mathcal{T} は透過率である. Bは、

$$\pi B(\tau) = \pi \int_{k_{min}}^{k_{max}} B(T(\tau)) dk$$
(7.7)

$$\pi B_s = \pi \int_{k_{min}}^{k_{max}} B(T_s) \, dk \tag{7.8}$$

である. ここで, k は波数である¹. 特に灰色大気を考える場合には, ステファン・ボルツマン定数 σ_{SB} を用いて,

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{7.9}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{7.10}$$

となる.

なお、下部境界にフラックスの値を与える場合には、与えるフラックスを F_{LB} として、 $\pi B_s = F_{LB}$ とすればよい.

透過率 $\mathcal{T}(au, au')$ は、例えば光学的厚さが与えられる場合、下のように表される、

$$\mathcal{T}(\tau, \tau') = \mathcal{T}(\tau(p), \tau(p'))$$

= exp[-\alpha{|\tau_L(p) - \tau_L(p')|]} (7.11)

 α は散光因子である. 光学的厚さはどのように与えても良いが, 例えば Schneider and Liu (2009) では, 下のように与えている.

$$\tau_L(p) = \tau_{L,0} \left(\frac{p}{p_0}\right)^2 \tag{7.12}$$

ここで, p_0 , $\tau_{L,0}$ はそれぞれ基準気圧とその気圧での光学的厚さである.

¹B の文字がかぶっている.

一方, Numaguti et al. (1992) の放射モデルでは, (k 分布法に似せた記述をしていることを除くと) 下のように与えている.

$$\tau_L(p) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz' + k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(7.13)

$$= k_{L,wv} \frac{1}{g} \int_0^p q_{wv} dp' + k_{L,da} \frac{p}{g}$$
(7.14)

ここで, $k_{L,wv}$, $k_{L,da}$ はそれぞれ水蒸気と乾燥大気の吸収係数であり, q_{wv} は比湿である.

一方,バンドモデルを用いる場合は,別途異なる表現で与えられる.

7.2.3 散乱を考慮した二流近似した放射伝達方程式

ここでは、一般化された二方向近似した放射伝達方程式 (e.g., Liou, 2002; Toon et al., 1989) について述べる. 特に、以下に示す式の定式化は、Toon et al. (1989) に 従う.

散乱特性上の均質大気,あるいは均質大気層,に対する,一般化された二方向近似

した放射伝達方程式の解, F[±]_{tot}, は下のように書くことができる.

$$F_{tot}^{\pm}(\tau) = F^{\pm}(\tau) + F_{dir}^{\pm}(\tau)$$
 (7.15)

$$F^{+}(\tau) = k_1 \exp(\lambda \tau) + \Gamma k_2 \exp(-\lambda \tau) + C^{+}(\tau)$$
(7.16)

$$F^{-}(\tau) = \Gamma k_1 \exp(\lambda \tau) + k_2 \exp(-\lambda \tau) + C^{-}(\tau)$$
(7.17)

$$F_{dir,n}^{+}(\tau) = 0 (7.18)$$

$$F_{dir,n}^{-}(\tau) = \mu_0 \pi F_s \exp\left(-\frac{\tau}{\mu_0}\right)$$
(7.19)

$$C^{+}(\tau) = \frac{\varpi_{0}\pi F_{s} \exp\left(-\frac{\tau}{\mu_{0}}\right) \left\{\frac{\gamma_{1} - \frac{\tau}{\mu_{0}}}{\gamma_{3}} + \gamma_{4}\gamma_{2}\right\}}{\lambda^{2} - \frac{1}{\mu_{0}^{2}}}$$

$$+ 2\mu_1 \left\{ B_0 + B_1 \left(\tau + \frac{1}{\gamma_1 + \gamma_2} \right) \right\}$$

$$= \pi E_1 \exp\left(-\frac{\tau}{\gamma_1}\right) \left\{ \frac{\gamma_1 + \frac{1}{\mu_0}}{\gamma_1 + \frac{1}{\mu_0}} + \gamma_0 \gamma_2 \right\}$$

$$(7.20)$$

$$C^{-}(\tau) = \frac{\omega_{0}\pi \Gamma_{s} \exp\left(-\frac{\mu_{0}}{\mu_{0}}\right) \left(-\frac{\gamma_{4}}{\gamma_{4}} + \frac{\gamma_{2}}{\gamma_{3}}\right)}{\lambda^{2} - \frac{1}{\mu_{0}^{2}}} + 2\mu_{1}\left\{B_{0} + B_{1}\left(\tau - \frac{1}{\gamma_{1} + \gamma_{2}}\right)\right\}$$
(7.21)

$$\lambda = \left(\gamma_1^2 - \gamma_2^2\right)^{1/2} \tag{7.22}$$

$$\Gamma = \frac{\gamma_2}{\gamma_1 + \lambda} \tag{7.23}$$

$$B_{0} = \pi B(\tau = 0)$$
(7.24)
$$\pi B(\tau = \tau_{s}) - \pi B(\tau = 0)$$
(7.24)

$$B_1 = \frac{\pi D(\tau - \tau_s) - \pi D(\tau - 0)}{\tau_s}$$
(7.25)

$$\mu_1 = \frac{1 - \omega_0}{\gamma_1 - \gamma_2} \tag{7.26}$$

ここで、 $C^{+/-}$ を求める際には、大気中のプランク関数が光学的厚さに対して線形 に依存することを仮定している. γ_1 , γ_2 , γ_3 , γ_4 は、放射伝達方程式の近似方法に よって異なる係数であり、(δ -)Eddington 法、(δ -)Hemispheric mean 法における係 数を表 7.1 に示す. ϖ_0 は一次散乱アルベド、 πF_s は大気上端での下向き入射放射フ ラックス、 μ_0 は太陽天頂角である. また、 τ_s は大気全体の光学的厚さ、あるいは、考 える均質大気層の光学的厚さである. k_1 , k_2 は定数であり、境界条件により決める.

境界条件は下のように与える.

$$F^{+}(\tau_{s}) = A_{sfc}F^{-}(\tau_{s}) + S_{sfc}$$
 (7.27)

$$F^{-}(0) = F^{-}_{TOA} \tag{7.28}$$

$$S_{sfc} = A_{sfc}\mu_0\pi F_s \exp\left(-\frac{\tau_s}{\mu_0}\right) + \epsilon\pi B_{sfc}$$
(7.29)

近似法	γ_1	γ_2	γ_3	γ_4				
Eddington	$\frac{7-\varpi_0(4+3g)}{4}$	$-\frac{1-\varpi_0(4-3g)}{4}$	$\frac{2-3g\mu_0}{4}$	$1 - \gamma_3$				
Hemispheric mean	$2 - \varpi_0(1+g)$	$\overline{\varpi_0(1-g)}$	_	_				

表 7.1: 二流近似における放射伝達方程式の定数

なお、Hemispheric mean 法は、一般に太陽放射に対しては用いないため、太陽放射 を扱う時に必要となる定数 γ_3, γ_4 については示さない.

ここで、 A_{sfc} 、 πF_s 、 ϵ 、 B_{sfc} は、それぞれ下部境界のアルベド、短波入射フラックス、 下部境界の射出率、下部境界のプランク関数である。 F_{TOA}^- は大気上端における下 向き拡散フラックスであり、一般に $F_{TOA}^- = 0$ である。

さらに, δ -調整 (δ -adjustment) を行うため, τ , ϖ_0 , g は元々の値... を用いて下のように求める.

… いずれ…

7.3 離散表現: 共通部分

この節の内容のコードとの対応は確認していない. 符号が違うかも. (コードの方を直していない.)

7.3.1 加熱率

放射加熱率は下のように離散化される.

$$Q_k = \frac{g}{C_p} \frac{F_{k+\frac{1}{2}} - F_{k-\frac{1}{2}}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(7.30)

7.3.2 散乱を無視した場合の放射伝達方程式

長波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = F_{k+\frac{1}{2}}^{+} - F_{k+\frac{1}{2}}^{-}$$

$$(7.31)$$

$$F_{k+\frac{1}{2}}^{+} = \pi B_s \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{\kappa} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(7.32)

$$F_{k+\frac{1}{2}}^{-} = \sum_{k'=k+1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(7.33)

ここで, *B* は

$$\pi B_{k} = \pi \sum_{i}^{N} B_{i} (T_{k}, k_{i}) w_{i}$$
(7.34)

$$\pi B_s = \pi \sum_{i}^{N} B_i (T_{s,k}, i_i) w_i$$
(7.35)

ここでは、*w* はガウス重みであり、波数積分はガウス求積法で評価する.または、灰 色大気の場合には、

$$\pi B_k = \sigma_{SB} T_k^4 \tag{7.36}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{7.37}$$

となる.

また、光学的厚さが与えられる場合の透過率は下のように離散化される.

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \exp(-\alpha(|\tau_{L,k+\frac{1}{2}} - \tau_{L,k'+\frac{1}{2}}|))$$
(7.38)

一方,放射過程の一部は,惑星表面の熱収支を通して鉛直拡散過程や惑星表面の熱 収支と関係しており,それらの方程式を連立して同時に解くことになる.鉛直拡散 過程や惑星表面の熱収支は陰解法で計算しているため,放射伝達方程式の一部につ いて線型化し,放射フラックスの温度に対する変化率を求めておく必要がある.放 射フラックスの温度に対する変化率は,

$$\frac{\partial F_{k+\frac{1}{2}}^{+}}{\partial T_{s}} = \frac{\partial \pi B_{s}}{\partial T_{s}} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}}$$
(7.39)

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_{*}} = 0 \tag{7.40}$$

$$\frac{\partial F_{k+\frac{1}{2}}^{+}}{\partial T_{k'}} = \begin{cases} -\frac{\partial \pi B_{k'}}{\partial T_{k'}} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right) & k \geq k' \\ 0 & k < k' \end{cases}$$
(7.41)

$$\frac{\partial F_{k+\frac{1}{2}}^{-}}{\partial T_{k'}} = \begin{cases} 0 & k \geq k' \\ \frac{\partial \pi B_{k'}}{\partial T_{k'}} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right) & k < k' \end{cases}$$
(7.42)

となる. これらにより、放射フラックスは、

$$(F_{k+\frac{1}{2}}^{+})^{n+1} = (F_{k+\frac{1}{2}}^{+})^{n-1} + \frac{\partial F_{k+\frac{1}{2}}^{+}}{\partial T_{s}} \Delta T_{s} + \sum_{k'=1}^{k_{max}} \frac{\partial F_{k+\frac{1}{2}}^{+}}{\partial T_{k'}} \Delta T_{k'}$$
(7.43)

$$(F_{k+\frac{1}{2}}^{-})^{n+1} = (F_{k+\frac{1}{2}}^{-})^{n-1} + \frac{\partial F_{k+\frac{1}{2}}^{-}}{\partial T_{s}} \Delta T_{s} + \sum_{k'=1}^{k_{max}} \frac{\partial F_{k+\frac{1}{2}}^{-}}{\partial T_{k'}} \Delta T_{k'}$$
(7.44)

$$\Delta T_s = T_s^{n+1} - T_s^{n-1} \tag{7.45}$$

$$\Delta T_k = T_k^{n+1} - T_k^{n-1} \tag{7.46}$$

として求められる.ただし、上記の式ではすべての層について和をとっているが、 実際は最下層の寄与のみ考慮し,

$$(F_{k+\frac{1}{2}}^{+})^{n+1} = (F_{k+\frac{1}{2}}^{+})^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_1} \Delta T_1$$
(7.47)

$$(F_{k+\frac{1}{2}}^{-})^{n+1} = (F_{k+\frac{1}{2}}^{-})^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_1} \Delta T_1$$
(7.48)

とするのが現実的である².

7.3.3 散乱を考慮した二流近似した放射伝達方程式

不均質大気に適用するために、大気が多数の均質の大気層からなると考える.この 時, n 番目の均質大気層に対する一般化された二方向近似した放射伝達方程式の解

radiation/radiation.tex(radiation/radiation-disc.tex) 2013/10/08(地球流体電脳倶楽部)

²放射過程,鉛直拡散過程,惑星表面熱収支,土壌中の熱収支の式をまとめて整理したものを三重 対角行列にするためである.

は下のように書くことができる.

$$F_{n}^{+}(\tau) = k_{1,n} \exp(\lambda_{n}\tau) + \Gamma_{n} k_{2,n} \exp(-\lambda_{n}\tau) + C_{n}^{+}(\tau)$$
(7.49)

$$F_{n}^{-}(\tau) = \Gamma_{n}k_{1,n}\exp(\lambda_{n}\tau) + k_{2,n}\exp(-\lambda_{n}\tau) + C_{n}^{-}(\tau)$$
(7.50)

$$C_{n}^{+}(\tau) = \frac{\varpi_{0,n}\pi F_{s} \exp\left(-\frac{\tau_{c,n}+\tau}{\mu_{0}}\right) \left\{\frac{\pi m - \mu_{0}}{\gamma_{3,n}} + \gamma_{4,n}\gamma_{2,n}\right\}}{\lambda_{n}^{2} - \frac{1}{\mu_{0}^{2}}} + 2\mu_{n} \int B_{n} + B_{n} \left(\tau + \frac{1}{\mu_{0}^{2}}\right) \left\{\frac{\pi m - \mu_{0}}{\gamma_{3,n}} + \gamma_{4,n}\gamma_{2,n}\right\}$$
(7.51)

$$+ 2\mu_{1,n} \left\{ B_{0,n} + B_{1,n} \left(\tau + \frac{1}{\gamma_{1,n} + \gamma_{2,n}} \right) \right\}$$
(7.51)
$$\pi \overline{\mu}_{0,n} \pi F_{n} \exp \left(-\frac{\tau_{c,n} + \tau}{\gamma_{1,n} + \frac{1}{\mu_{0}}} + \gamma_{0,n} \gamma_{2,n} \right)$$

$$C_{n}^{-}(\tau) = \frac{\omega_{0,n} \pi T_{s} \exp\left(-\frac{-\mu_{0}}{\mu_{0}}\right) \left\{ \frac{-\gamma_{4,n}}{\gamma_{4,n}} + \frac{\gamma_{2,n}}{\gamma_{3,n}} \right\}}{\lambda_{n}^{2} - \frac{1}{\mu_{0}^{2}}} + 2\mu_{1,n} \left\{ B_{0,n} + B_{1,n} \left(\tau - \frac{1}{\gamma_{1,n} + \gamma_{2,n}}\right) \right\}$$
(7.52)

ただし, τ は, n 層目の上端から測った光学的厚さであり, $\tau_{c,n} = \sum_{k=n+1}^{N} \tau_k$ は n 層 目よりも上空の光学的厚さである. また, ここで, τ_k は k 番目の層全体の光学的厚 さである. また, B_0 , B_1 はプランク関数とその微分 (光学的厚さによる微分) に piをかけたものである.

これらの方程式に対して、下の境界条件を与える.

$$F_n^+(0) = F_{n+1}^+(\tau_n) \tag{7.53}$$

$$F_n^-(0) = F_{n+1}^-(\tau_n) \tag{7.54}$$

$$F_1^+(\tau_1) = A_{sfc}F_1^-(\tau_1) + S_{sfc}$$
(7.55)

$$F_N^-(0) = F_{TOA}^-$$
(7.56)

$$S_{sfc} = A_{sfc}\mu_0\pi F_s \exp\left(-\frac{\tau_{c,1}}{\mu_0}\right) + \epsilon\pi B_{sfc}$$
(7.57)

ここで、一般に $F_{TOA}^- = 0$ である.

これらの境界条件を適用することで、放射伝達方程式は、 $k_{1,n}, k_{2,n}$ に対する連立一次方程式となる.さらに、Toon et al. (1989)の方法に基づいて整理することで、下のように行列部分を三重対角行列にすることができる.

$$A\boldsymbol{x} = \boldsymbol{d} \tag{7.58}$$

ここで, A, x, d の要素はそれぞれ下のように書ける.

$$a_{1,1} = e_{1,1} - A_{sfc} e_{3,1} \tag{7.59}$$

$$a_{1,2} = -(e_{2,1} - A_{sfc}e_{4,1}) \tag{7.60}$$

$$a_{2n,2n-1} = e_{1,n}e_{2,n+1} - e_{3,n}e_{4,n+1}$$
(7.61)

$$a_{2n,2n} = e_{2,n}e_{2,n+1} - e_{4,n}e_{4,n+1}$$
(7.62)

$$a_{2n,2n+1} = e_{1,n+1}e_{4,n+1} - e_{2,n+1}e_{3,n+1}$$
(7.63)

$$a_{2n+1,2n} = e_{2,n}e_{3,n} - e_{1,n}e_{4,n} (7.64)$$

$$a_{2n+1,2n+1} = e_{1,n}e_{1,n+1} - e_{3,n}e_{3,n+1}$$
(7.65)

$$a_{2n+1,2n+2} = e_{3,n}e_{4,n+1} - e_{1,n}e_{2,n+1}$$
(7.66)

$$a_{2N,2N-1} = e_{1,N}$$
 (7.67)
 $a_{2N,2N} = e_{2,N}$ (7.68)

$$a_{2N,2N} = e_{2,N} (7.68) (7.68)$$

$$a_{i,j\neq i-1,i,i+1} = 0 \tag{7.69}$$

$$x_1 = Y_{1,1} \tag{7.70}$$

$$x_2 = Y_{2,1} (7.71)$$

$$... x_{2n-1} = Y_{1,n}
 (7.72)$$

$$x_{2n} = Y_{2,n} (7.73)$$

$$x_{2N-1} = Y_{1,N} (7.74)$$

$$r_{\rm ext} - V_{\rm ext}$$
 (7.75)

$$x_{2N} \equiv Y_{2,N}$$
 (1.13)

$$d_{1} = -C_{1}^{+}(\tau_{1}) + A_{sfc}C_{1}^{-}(\tau_{1}) + S_{sfc}$$

$$d_{2n} = e_{2,n+1}\{-C_{n}^{-}(0) + C_{n+1}^{-}(\tau_{n+1})\} - e_{4,n+1}\{-C_{n}^{+}(0) + C_{n+1}^{+}(\tau_{n+1})\}$$

$$d_{2n+1} = e_{3,n}\{-C_{n}^{-}(0) + C_{n+1}^{-}(\tau_{n+1})\} - e_{1,n}\{-C_{n}^{+}(0) + C_{n+1}^{+}(\tau_{n+1})\}$$

$$d_{2N} = -C_{N}^{-}(0) + F_{s}^{-}(0)$$

$$(7.79)$$

ここで $e_{1,n}, e_{2,n}, e_{3,n}, e_{4,n}$ は下のように書ける.

$$e_{1,n} = \Gamma_n \exp(-\lambda_n \tau_n) + 1 \tag{7.80}$$

$$e_{2,n} = \Gamma_n \exp(-\lambda_n \tau_n) - 1 \tag{7.81}$$

$$e_{3,n} = \exp(-\lambda_n \tau_n) + \Gamma_n \tag{7.82}$$

$$e_{4,n} = \exp(-\lambda_n \tau_n) - \Gamma_n \tag{7.83}$$

なお,

$$Y_{1,n} = \frac{1}{2} \{ k_{1,n} \exp(\lambda_n \tau_n) + k_{2,n} \}$$
(7.84)

$$Y_{2,n} = \frac{1}{2} \{ k_{1,n} \exp(\lambda_n \tau_n) - k_{2,n} \}$$
(7.85)

であり、これらを用いると、フラックスは下のように書くことができる.

$$F_n^+(\tau) = Y_{1,n}[\exp\{-\lambda_n(\tau_n - \tau)\} + \Gamma_n \exp(-\lambda_n \tau)] + Y_{2,n}[\exp\{-\lambda_n(\tau_n - \tau)\} - \Gamma_n \exp(-\lambda_n \tau)] + C_n^+(\tau)$$
(7.86)
$$F_n^-(\tau) = Y_{1,n}[\Gamma_n \exp\{-\lambda_n(\tau_n - \tau)\} + \exp(-\lambda_n \tau)]$$

これより、層の境界におけるフラックスは下のように書くことができる.

$$F_n^+(0) = e_{3,n}Y_{1,n} + e_{4,n}Y_{2,n} + C_n^+(0)$$
(7.88)

$$F_n^+(\tau_n) = e_{1,n}Y_{1,n} - e_{2,n}Y_{2,n} + C_n^+(\tau_n)$$
(7.89)

$$F_n^-(0) = e_{1,n}Y_{1,n} + e_{2,n}Y_{2,n} + C_n^-(0)$$
(7.90)

$$F_n^-(\tau_n) = e_{3,n}Y_{1,n} - e_{4,n}Y_{2,n} + C_n^-(\tau_n)$$
(7.91)

なお、短波に対しては、直達光成分を加えることで全フラックスを得る.

$$F_{tot,n}^{\pm}(\tau) = F_n^{\pm}(\tau) + F_{dir,n}^{\pm}(\tau)$$
 (7.92)

$$F_{dir,n}^{+}(\tau) = 0 (7.93)$$

$$F_{dir,n}^{-}(\tau) = \mu_0 \pi F_s \exp\left(-\frac{\tau_{c,n} + \tau}{\mu_0}\right)$$
(7.94)

放射源関数法による解

ここでは, Toon et al. (1989) で紹介されている放射源関数法 (source function technique) による解を示す.

放射源関数法を用いて求められるフラックスは下のように書くことができる.

$$F_n^{\pm}(\tau) = \int_0^1 \mu I^{\pm}(\tau, \mu) d\mu$$
 (7.95)

$$\sim \sum_{i} w_i \mu_i I^{\pm}(\tau, \mu_i) \tag{7.96}$$

ここで、フラックスを求めるときの角度積分は、ガウス求積法を用いて評価する. ここで、 w_i はガウス重みである. また、各 μ に対する、方位角方向に積分した放射輝度 I^{\pm} は、下のように書くことができる.

$$I_{n}^{+}(0,\mu) = I_{n}^{+}(\tau_{n}) \exp\left(-\frac{\tau_{n}}{\mu}\right)$$

$$+ \frac{G_{n}}{\lambda\mu - 1} \left\{ \exp\left(-\frac{\tau_{n}}{\mu}\right) - \exp\left(-\tau_{n}\lambda\right) \right\}$$

$$+ \frac{H_{n}}{\lambda\mu + 1} \left[1 - \exp\left\{-\tau_{n}\left(\lambda + \frac{1}{\mu}\right)\right\}\right]$$

$$+ \alpha_{1,n} \left\{1 - \exp\left(-\frac{\tau_{n}}{\mu}\right)\right\}$$

$$+ \alpha_{2,n} \left\{\mu - (\tau_{n} + \mu) \exp\left(-\frac{\tau_{n}}{\mu}\right)\right\}$$

$$I_{n}^{-}(\tau_{n}, -\mu) = I_{n}^{-}(0) \exp\left(-\frac{\tau_{n}}{\mu}\right)$$

$$(7.97)$$

$$+\frac{J_n}{\lambda\mu+1}\left[1-\exp\left\{-\tau_n\left(\lambda+\frac{1}{\mu}\right)\right\}\right] +\frac{K_n}{\lambda\mu-1}\left\{\exp\left(-\frac{\tau_n}{\mu}\right)-\exp\left(-\tau_n\lambda\right)\right\} +\sigma_{1,n}\left\{1-\exp\left(-\frac{\tau_n}{\mu}\right)\right\} +\sigma_{2,n}\left\{\mu\exp\left(-\frac{\tau_n}{\mu}\right)+\tau_n-\mu\right\}$$
(7.98)

ここで, G_n , H_n , J_n , K_n , $\alpha_{1,n}$, $\alpha_{2,n}$, $\sigma_{1,n}$, $\sigma_{2,n}$ は下のように与えられる.

$$G_n = (Y_{1,n} + Y_{2,n}) \left(\frac{1}{\mu_1} - \lambda\right)$$
(7.99)

$$H_n = (Y_{1,n} - Y_{2,n})\Gamma\left(\lambda + \frac{1}{\mu_1}\right)$$
(7.100)

$$J_n = (Y_{1,n} + Y_{2,n})\Gamma\left(\lambda + \frac{1}{\mu_1}\right)$$
(7.101)

$$K_n = (Y_{1,n} - Y_{2,n}) \left(\frac{1}{\mu_1} - \lambda\right)$$
(7.102)

$$\alpha_{1,n} = 2\left\{B_{0,n} + B_{1,n}\left(\frac{1}{\gamma_1 + \gamma_2} - \mu_1\right)\right\}$$
(7.103)

$$\alpha_{2,n} = 2B_{1,n} \tag{7.104}$$

$$\sigma_{1,n} = 2\left\{B_{0,n} - B_{1,n}\left(\frac{1}{\gamma_1 + \gamma_2} - \mu_1\right)\right\}$$
(7.105)

$$\sigma_{2,n} = 2B_{1,n} \tag{7.106}$$

境界条件は下のように与えられる.

$$I_1^+(\tau_n) = 2\epsilon \pi B_{sfc} + A_{sfc} I_1^-(\tau_n)$$
(7.107)

$$I_N^-(0) = 0 (7.108)$$

である.

なお,

$$\frac{\partial F_n^{\pm}(\tau)}{\partial T_s} \sim \sum_i w_i \mu_i \frac{\partial I^{\pm}(\tau, \mu_i)}{\partial T_s}$$
(7.109)

$$\frac{\partial I_n^+(0,\mu)}{\partial T_s} = 2\epsilon \pi \frac{\partial B_{sfc}}{\partial T_s} \prod_{k=1}^n \exp\left(-\frac{\tau_k}{\mu}\right)$$
(7.110)

$$\frac{\partial I_n^-(0,\mu)}{\partial T_s} = 0 \tag{7.111}$$

$$\frac{\partial F_n^{\pm}(\tau)}{\partial T_1} = 0 \tag{7.112}$$

とする³.

7.4 数理表現: AGCM5 放射モデル

ここでは,地球流体電脳倶楽部 AGCM5 に実装されていた放射モデルについて述 べる.このモデルは,Numaguti (1992)の放射モデルを基にして,実装方法を一部 変更したものである⁴.

この放射モデルでは、長波では散乱を無視し、短波では、散乱の効果を非常に簡単 に考慮して、実質吸収のみ扱う。

7.4.1 長波放射

長波で扱う放射伝達方程式は,第7.2.2節に示した,散乱を無視した放射伝達方程 式である.そこで以下では,透過率の式のみ示す.

 $[\]frac{3 \frac{\partial I_n^+(0,\mu)}{\partial T_s}}{\partial T_s}$ の定式化は, 正確ではない. あくまで近似. また, もう少し考えると $\frac{\partial F_n^{\pm}(\tau)}{\partial T_1}$ は, 何かしら求められると思うが, とりあえずパス.

⁴ここで述べる放射モデルと Numaguti (1992)の放射モデルの差は,放射伝達方程式の積分を 部分積分しているかどうかの違いである.したがって,連続系では両者は等しい.離散化した時点 で差が出るはずである.どちらの方法の方が良いのかはよく分からない.

^{2013/10/08(}地球流体電脳倶楽部) radiation/radiation.tex(radiation/radiation-agcm5-math.tex)

本モデルにおいては,吸収物質として水蒸気とそれ以外の気体を考える.全波長域 を1バンドとし,k分布法を念頭に,吸収係数がバンド内で分布を持つ場合を考える⁵.

このとき, πB(τ) は

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{7.113}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{7.114}$$

と書くことができ、透過率は下のように書くことができる.

$$\mathcal{T}(\tau, \tau') = \mathcal{T}(\tau(p), \tau(p')) = \int_0^1 \exp[-\alpha \{ |\tau_{L,wv}(p, g) - \tau_{L,wv}(p', g)| + |\tau_{L,da}(p, g) - \tau_{L,da}(p', g)| \}] dg \quad (7.115)$$

$$\tau_{L,wv}(p,g) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(7.116)

$$= k_{L,wv} \frac{1}{g} \int_0^p q_{wv} dp'$$
 (7.117)

$$\tau_{L,da}(p,g) = k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(7.118)

$$= k_{L,da} \frac{p}{g} \tag{7.119}$$

ここで、 σ_{SB} はステファン・ボルツマン定数であり、 α は散光因子である. $k_{L,wv}$ 、 $k_{L,da}$ はそれぞれ長波放射における水蒸気とそれ以外の気体の吸収係数である. gは積算確率関数 (のようなもの) である.

7.4.2 短波放射

本モデルにおいては,非常に簡単に散乱の効果を考慮するが,実質的に吸収のみ行 う大気の放射伝達方程式を解く.

吸収物質としては水蒸気とそれ以外の気体を考える.全波長域を1バンドとし,k 分布法を念頭に,吸収係数がバンド内で分布を持つ場合を考える⁶.散乱過程の効 果は,大気アルベド *A_a*というパラメータを導入し,大気の上端においてその割合 の放射エネルギーが反射すると考えることによって考慮する.

⁵この考え方がよくある k 分布法の考え方と整合的かどうか良くわからない. しかし, Numaguti (1992)の定式化に物理的意味を付けるとすると, このようになると思われる.

⁶この考え方は長波放射と同様である.

radiation/radiation.tex(radiation/radiation-agcm5-math.tex) 2013/10/08(地球流体電脳倶楽部)

このとき、放射伝達方程式は下のように書くことができる.

$$F_S(\tau) = F_S^+(\tau) - F_S^-(\tau)$$
(7.120)

$$F_{S}^{+}(\tau) = (1 - A_{a})F_{0}(\chi)A_{s}\mathcal{T}_{dif}(\tau,\chi)$$
(7.121)

$$F_{S}^{-}(\tau) = (1 - A_{a})F_{0}(\chi)\mathcal{T}_{dir}(\tau,\chi)$$
(7.122)

$$\mathcal{T}_{dir}(\tau, \chi) = \mathcal{T}_{dir}(\tau(p), \chi) = \int_{0}^{1} \exp[-\sec\chi\{\tau_{S,wv}(p,g) + \tau_{S,da}(p,g)\}] dg$$
(7.123)

$$\mathcal{T}_{dif}(\tau, \chi) = \mathcal{T}_{dif}(\tau(p), \chi) \\ = \int_{0}^{1} \exp[-\sec \chi \{\tau_{S,wv}(p_{s}, g) + \tau_{S,da}(p_{s}g)\}] \\ \cdot \exp[-\alpha \{|\tau_{S,wv}(p_{s}, g) - \tau_{S,wv}(p, g)| \\ + |\tau_{S,wv}(p_{s}, g) - \tau_{S,wv}(p, g)| \} d\tau = (7.124)$$

$$+|\tau_{S,da}(p_s,g)-\tau_{S,da}(p,g)|\}]dg$$
 (7.124)

$$\tau_{S,wv}(p,g) = k_{S,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(7.125)

$$= k_{S,wv} \frac{1}{g} \int_0^p q_{wv} dp'$$
 (7.126)

$$\tau_{S,da}(p,g) = k_{S,da} \int_{z(p)}^{\infty} \rho dz'$$
(7.127)

$$= k_{S,da} \frac{p}{g} \tag{7.128}$$

ここで, χ は太陽の天頂角⁷ (Liou, 2002 によれば solar zenith angle) であり, α は 散光因子である. $k_{S,wv}$, $k_{S,da}$ はそれぞれ短波放射における水蒸気とそれ以外の気 体の吸収係数である. また, A_s は惑星表面アルベドである. $F_0(\chi)$ は, 天頂角 χ に おける大気上端での恒星の放射フラックスである.

⁷天頂角を表す数学記号は文献によってまちまちである. 会田 (1982) では θ , Liou (2002) では θ_0 , Peixot and Oort (1992) では Z, Hartmann (1994) では θ_s が使われている.

^{2013/10/08(}地球流体電脳倶楽部) radiation/radiation.tex(radiation/radiation-agcm5-disc.tex)

7.5 離散表現: AGCM5 放射モデル

7.5.1 長波放射

長波における $\pi B(\tau)$ と透過率は下のように離散化される.

$$\pi B_k = \sigma_{SB} T_k^4 \tag{7.129}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{7.130}$$
$$l_{max,S}$$

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{max,l} \Delta g_{L,l} \exp(-\alpha(|\tau_{L,wv,k+\frac{1}{2},l} - \tau_{L,wv,k'+\frac{1}{2},l}| + |\tau_{L,da,k+\frac{1}{2},l} - \tau_{L,da,k'+\frac{1}{2},l}|))$$
(7.131)

$$\tau_{L,wv,k-\frac{1}{2},l} = k_{L,wv,l} M_{wv,k-\frac{1}{2}}$$
(7.132)

$$\tau_{L,da,k-\frac{1}{2},l} = k_{L,da,l} M_{da,k-\frac{1}{2}}$$
(7.133)

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(7.134)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{7.135}$$

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{l_{max,S}} \Delta g_{L,l} \exp(-\alpha (k_{L,wv,l} | M_{wv,k+\frac{1}{2}} - M_{wv,k'+\frac{1}{2}} | +k_{L,da,l} | M_{da,k+\frac{1}{2}} - M_{da,k'+\frac{1}{2}} |)) \quad (7.136)$$

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(7.137)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{7.138}$$

ここで, $l_{max,L}$ は, 長波放射における, 積算確率関数に対する積分の分点の数 (領域の数) であり, $\Delta g_{L,l}$ は積算確率関数の l 番目の領域の幅である.
第7章 放射

7.5.2 短波放射

短波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = F_{k+\frac{1}{2}}^{+} - F_{k+\frac{1}{2}}^{-}$$
(7.139)

$$F_{k+\frac{1}{2}}^{+} = (1 - A_a) F_0(\chi) A_s \mathcal{T}_{dif,k+\frac{1}{2}}(\chi)$$
(7.140)

$$F_{k+\frac{1}{2}}^{-} = (1-A_a)F_0(\chi)\mathcal{T}_{dir,k+\frac{1}{2}}(\chi)$$
$$\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,k+\frac{1}{2},l}\}\right]\Delta g_{S,l} \quad (7.141)$$

$$\mathcal{T}_{dif,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l}\}\right] \\ \cdot \exp\left[-\alpha\{\tau_{S,wv,\frac{1}{2},l} - \tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l} - \tau_{S,da,k+\frac{1}{2},l}\}\right] \Delta g_{S,l} \quad (7.142)$$

$$\tau_{S,wv,k-\frac{1}{2},l} = k_{S,wv,l} M_{wv,k-\frac{1}{2}}$$
(7.143)

$$\tau_{S,da,k-\frac{1}{2},l} = k_{S,da,l} M_{da,k-\frac{1}{2}}$$
(7.144)

7.6 数理/離散表現:地球放射モデル

7.6.1 概要

ここでは、dcpam で用いている地球大気放射モデルの概要を説明する. ここでは、 数理モデルと離散モデルを分けずに示す. 本節では、波長分割範囲や、それぞれの 波長範囲において考慮する吸収物質、および計算方法について述べる(予定であ る). しかし、現状、本節では長波放射の透過率の計算方法について述べることにと どめる.

7.6.2 長波放射: 概要

長波放射モデルでは、Chou et al. (2001)の方法に従って透過率を計算し、それを 用いて散乱のない放射伝達方程式を解く.以下では、波長分割範囲、透過率の計算 方法について述べる.計算に用いる散乱のない放射伝達方程式については、第7.2.2 節、第7.3.2節を参照すること.

7.6.3 長波放射: 波長の分割

本モデルでは、長波放射を表7.2のように波長分割する⁸.

7.6.4 長波放射:透過率の計算

概要

Chou et al. (2001) では, 透過率の計算において, 吸収気体に応じて適した方法を 以下の3種類から選んで用いている.

● k 分布法

⁸現在の版では、Chou et al. (2001) で用いられているすべてを吸収物質を考慮しているわけではない.

表 7.2: 長波放射における波長の分割

バンド番号	波数範囲 (cm ⁻¹)	吸収物質	透過率計算方法
1	0–340	H_2O line	k 分布法
2	340 - 540	H_2O line	k 分布法
3a	540 - 620	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		CO_2	k 分布法 or 表参照法
3b	620 - 720	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		CO_2	k 分布法 or 表参照法
3c	720-800	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		CO_2	k 分布法 or 表参照法
4	800-980	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		CO_2	1 パラメータスケーリング法
5	980-1100	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		CO_2	1 パラメータスケーリング法
		O_3	表参照法
6	1100 - 1215	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		N_2O	1 パラメータスケーリング法
		CH_4	1 パラメータスケーリング法
7	1215 - 1380	H_2O line	k 分布法
		H_2O continuum	1 パラメータスケーリング法
		N_2O	1 パラメータスケーリング法
		CH_4	1 パラメータスケーリング法
8	1380 - 1900	H_2O line	k 分布法
9	1900-3000	H_2O line	k 分布法

- 表参照法
- 1パラメータスケーリング法

また,雲の吸収については上記とは別の方法を用いて透過率を評価する.以下では, 気体の吸収に伴う3種類の透過率計算法について述べる.

なお、あるバンド内に複数の物質による吸収が生じる場合には、特に述べない場合、 以下のように、それぞれの物質による透過率の積として全体の透過率を評価して いる.

$$\mathcal{T} = \bar{\mathcal{T}}_1 \bar{\mathcal{T}}_2 \tag{7.145}$$

ここで, $\overline{\mathcal{T}}_{\infty}$, $\overline{\mathcal{T}}_{\epsilon}$ はそれぞれ, 吸収物質 1, 2 によるバンドの平均透過率である.

k 分布法

Chou et al. (2001) では,計算コストを減らすことを目指して工夫した k 分布法を 考案した. この方法を用いる場合,透過率は下のように計算する.

$$\mathcal{T}(w) = \sum_{n=1}^{N} \exp(-\frac{k_n w}{\bar{\mu}}) \Delta g_n \tag{7.146}$$

$$w(z_1, z_2) = \int_{z_1}^{z_2} q(z)\rho(z) \left(\frac{p(z)}{p_r}\right)^m h(T(z), T_r)dz$$
(7.147)

$$= \frac{1}{g} \int_{p_2}^{p_1} q(p) \left(\frac{p}{p_r}\right)^m h(T(p), T_r) dp$$
(7.148)

$$h(T, T_r) = 1 + \alpha (T - T_r) + \beta (T - T_r)^2$$
(7.149)

ここで、N は積算確率関数の分割数であり、 k_n は n 番目のビンの吸収係数、 Δg_n は n 番目のビンの吸収係数、 Δg_n は n 番目のビンの重み、 $\bar{\mu}$ は拡散率 ($\bar{\mu} = 1.66$) である.

また、Chou et al. (2001) では、計算を高速に行うために、吸収係数を以下のように 選択している.

$$k_n = \eta k_{n-1} \tag{7.150}$$

ここで, η は正の整数である. このように選ぶことで, 指数関数の計算回数を減ら すことができる.

用いているパラメータについては、Chou et al. (2001)の Table 3, 4 を参照する こと.

radiation/radiation.tex(radiation/radiation-EarthV2.tex) 2013/10/08(地球流体電脳倶楽部)

表参照法

Chou and Kouvaris (1991), Chou et al. (2001) による表参照法を用いる場合, 透 過率は下のように計算する.

$$\mathcal{T} = 1 - A(p_{eff}, w, T_{eff}) \tag{7.151}$$

$$= 1 - A_0(p_{eff}, w, 250) \{ 1 + \alpha(p_{eff}, w)(T_{eff} - 250) + \beta(p_{eff}, w)(T_{eff} - 250)^2 \}$$
(7.152)

$$p_{eff} = \frac{\int p dw}{\int dw} \tag{7.153}$$

$$T_{eff} = \frac{\int T dw}{\int dw} \tag{7.154}$$

$$dw = q\rho dz \tag{7.155}$$

ここで、 $A_0(p_{eff}, w, 250), \alpha(p_{eff}, w), \beta(p_{eff}, w)$ は基準気圧、温度における様々な光路長に対して予め計算された吸収率と係数の表から値を内挿して求める.

1 パラメータスケーリング法

Chou et al. (2001) による 1 パラメータスケーリング法を用いる場合, 透過率は下のように計算する.

$$\mathcal{T} = \exp\left(-\frac{k^c w^c}{\bar{\mu}}\right) \tag{7.156}$$

$$w^{c}(p_{e},T) = \int_{z_{1}}^{z_{2}} q\rho\left(\frac{p_{e}}{p_{0}}\right) \exp\left\{1800\left(\frac{1}{T} - \frac{1}{T_{r}}\right)\right\} dz$$
(7.157)

$$= \frac{1}{g} \int_{p_2}^{p_1} q\left(\frac{p_e}{p_0}\right) \exp\left\{1800\left(\frac{1}{T} - \frac{1}{T_r}\right)\right\} dp \tag{7.158}$$

ここで、 p_e は水蒸気分圧、 $p_0 = 1013$ hPa、 $T_r = 296$ である.

 $\frac{k^c}{\bar{\mu}}$ の値は, Chou et al. (2001)の Table 9 を参照すること.

7.7 大気上端での恒星の放射フラックス

惑星上の 1 点における大気上端での恒星の放射フラックス $F_0(\chi)$ は

$$F_{0}(\chi) = \begin{cases} F_{00} \left(\frac{1}{r_{s}}\right)^{2} \cos \chi & (\cos \chi > 0) \\ 0 & (\cos \chi \le 0) \end{cases}$$
(7.159)

と書くことができる. F_{00} は軌道長半径における恒星の放射フラックスであり,太陽定数に相当する⁹. r_S は惑星の軌道長半径で規格化した恒星-惑星間距離である. χ は考えている地点における恒星の天頂角である.

 $\cos \chi \, \mathbf{l},$

$$\cos \chi = \cos \phi \cos \delta_S \cos H + \sin \phi \sin \delta_S \tag{7.160}$$

と表わされる. ここで、 ϕ は緯度、 δ_S は恒星の傾斜角 (惑星の赤道面から測った太陽の角度である. Liou、2002 によれば declination of the sun. 天球上における恒星の赤緯とも等しい) である. *H* は時角 (hour angle) であり、考える点の現在の位置と正午になる時の位置との経度の差 (もしくは恒星直下点の経度を基準にした経度) である. (7.160) は球面三角関数の公式を使えば導くことができる (Liou、2002の 2.2 節および Appendix C 参照). 各種の角度の関係を 図 7.1 と図 7.2 に示しておく. なお、depam の放射計算においては、 $\cos \chi$ よりも $\sec \chi$ の形の方が便利であるので、変数としては $\sec \chi$ の値を格納したものを用意している.

 r_S は惑星の軌道要素から次のように計算される (ランダウ・リフシッツ「力学」 $\S15$ 参照).

$$r_S = (1 - e\cos\xi) \tag{7.161}$$

ここで, e は離心率である. ξ は離心近点角 (または離心近点離角, eccentric anomaly) であり, 楕円上の位置を与えるパラメータであり¹⁰, ケプラーの方程式

$$\xi - e\sin\xi = l \tag{7.162}$$

⁹太陽定数のより正確な定義は恒星-惑星間の平均距離における恒星の放射フラックスである.ケプラー運動する惑星の恒星からの平均距離は

$$a\left(1+\frac{1}{2}e^2\right)$$

となる. (a は軌道長半径, e は離心率). $e \ll 1$ であれば平均距離は a とほぼ等しい. ¹⁰楕円の中心を原点に,近日点の方向を x 軸にとった時に楕円上の点 (x, y) と離心近点角 ξ と

Figure 2.5 The earth-sun geometry. *P* denotes the perihelion, *A* the aphelion, *AE* the autumnal equinox, *VE* the vernal equinox, *WS* the winter solstice, and *SS* the summer solstice, **n** is normal to the ecliptic plane, **a** is parallel to the earth's axis, δ is the declination of the sun, ϵ the oblique angle of the earth's axis, ω the longitude of the perihelion relative to the vernal equinox, v the true anomaly of the earth at a given time, λ the true longitude of the earth, *O* the center of the ellipse, *OA* (or *OP* = *a*) the semiminor axis, *S* the position of the sun, *E* the position of the earth, and *ES* (= *r*) the distance between the earth and the sun.

図 7.1: 惑星恒星系における各種角度の関係. 原図は Liou (2002) の Figure 2.5. いずれ自分で書きかえないといけないだろう. 図中の δ が δ_S に, ν が Φ に対応する.

Figure 2.6 Relationship of the solar zenith angle θ_0 to the latitude φ , the solar inclination angle δ , and the hour angle h. P and D are the point of observation and the point directly under the sun, respectively (see text for further explanation).

図 7.2: 天頂角・緯度・恒星の傾斜角・時角の関係. 原図は Liou (2002) の Figure 2.6. いずれ自分で書きかえないといけないだろう. 図中の θ_0 が χ に, δ が δ_S に対応する.

を解くことによって求められる.ここで l は平均近点角 (mean anomaly) であり, 惑星軌道を円で近似して, 軌道中心を原点として近日点の方向から測った惑星の位 置までの角度である.時刻を t, 公転周期を T_{orb} とすると

$$l = \frac{2\pi(t - t_0)}{T_{orb}} + (\Phi_{Epoch} - \Phi_0)\frac{\pi}{180}$$
(7.163)

となる. t_0 は元期 (げんき, 天体位置計算の基準となる時刻. 天体観測では軌道要 素が観測された日を元期とする)を示す時刻である. Φ_{Epoch} は元期における惑星の 平均近点角 (単位は degree, 元期における太陽の黄経に π を足したもの), Φ_0 は近 日点黄経である. dcpam では, 各時刻における *l* を求めた後に Newton 法によって (7.162) を ξ について解いている.

 δ_S は以下の式で計算される.

$$\sin \delta_S = -\sin \theta_p \sin(\Phi_0 + \Phi) \tag{7.164}$$

 θ_p は赤道傾斜角 (天体の軌道面と赤道面のなす角. Liou, 2002 によれば oblique angle of the earth's axis. 自転軸と公転軸のなす角にも等しい). Φ は真近点角 (true anomaly) であり, 恒星を原点として, 近日点から測る惑星の軌道上の位置を表す角度である. Φ は以下の式から決定される

$$\tan \frac{\Phi}{2} = \sqrt{\frac{1+e}{1-e}} \tan \frac{\xi}{2}$$
(7.165)

 Φ_0 は近日点黄経であり、春分点の方向と近日点のなす角である. $\Phi_0 + \Phi$ は恒星を 原点として、春分点の方向から惑星の位置まで測った角度となっている.

時角 H は以下の式で決定する.

$$H = 2\pi t_{ByDay} - \pi + \lambda \tag{7.166}$$

 t_{ByDay} は時刻を日単位で表現したものである ($t_{ByDay} = 0$ が深夜 0 時に, $t_{ByDay} = 0.5$ が正午に対応する). 日の出と日の入りの時の時角 H_0 は

$$\cos H_0 = -\tan\phi\tan\delta_S \tag{7.167}$$

の関係は以下のようになる.

$$x = a(\cos \xi - e),$$

$$y = a\sqrt{1 - e^2}\sin \xi,$$

ただし, a は軌道長半径, e は離心率である.

となる.

以下では、現在 dcpam に実装されている日射分布の計算方法に関する記述を行う。

1. 年変化 (季節変化)を日変化する場合.

この場合には、上記の (7.159), (7.160), (7.161), (7.164) を用いて緯度・経度, 時間を与えた場合の大気上端における恒星からの放射フラックス分布を計算 する.

dcpam5 のデフォルトのパラメータ設定を使って計算した大気上端における 日平均日射量の時間-緯度分布を図 7.3 に,現実の惑星にあわせたパラメータ 設定を使って計算した日平均日射量の時間-緯度分布を図 7.4 に示す.現実の 地球の場合の結果 (図 7.4b) は, Liou (2002) の Figure 2.8 で示された結果と 同じパターンになっている.

2. 年平均・日平均日射分布を用いる場合

depam5 においては、年平均入射量および年平均入射角は、以下の近似式を用いて計算している.

$$\overline{F_S^I}(\varphi) \simeq -S_0(A_{ins} + B_{ins}\cos^2\varphi), \qquad (7.168)$$

$$\overline{\cos\chi} \simeq A_{\chi} + B_{\chi} \cos^2\varphi. \tag{7.169}$$

なお、短波放射の放射伝達方程式で必要となる $\sec \zeta$ は

$$\overline{\sec \chi} = \frac{1}{A_{\chi} + B_{\chi} \cos^2 \varphi} \tag{7.170}$$

として計算する.

 $A_{ins}, B_{ins}, A_{\chi}, B_{\chi}$ の値を表7.3 に示す. これらの値は AGCM5 で使用され ていたものであり、どのように決定されたのかについては正確なところは確 認されていない. しかし、(7.159) によって入射放射量を計算し日平均・年平均 した結果を用いて、最小二乗法で (7.168) へのフィッティングを行うと表7.3 に示した A_{ins} および B_{ins} の値とほぼ等しい数値が得られる (T42 で計算し た場合 $A_{ins} = 0.12756, B_{ins} = 0.18340$ となる). A_{χ}, B_{χ} については、(7.159) の時間平均を取ったものが (7.168) であると考えれば A_{ins}, B_{ins} をそれぞれ 定数倍したものが A_{χ}, B_{χ} になるはずである. 赤道での $\overline{\cos \chi}$ の値が 1 にな るように定数を決めると表7.3 の A_{χ} および B_{χ} と等しい値が得られる (T42 の計算で得られた $A_{ins} = 0.12756, B_{ins} = 0.18340$ を用いると $A_{\chi} = 0.41021, B_{\chi} = 0.58979$ となる).

図 7.3: dcpam の入射太陽放射ルーチンを用いて計算される大気上端における日 平均太陽放射の時間-緯度分布. 横軸は 1 年の開始日からの日数, 縦軸は緯度. 大気 上端における太陽放射分布を 1 時間ごとに計算し,日平均をとった値を示してい る. dcpam5 の大気上端での恒星の放射フラックスを与えるサブルーチンを用いて 計算した. 水平解像度は T21. $F_{00} = 1380 \text{ W/m}^{-2}$, $\theta_p = 23.5^\circ$, $\Phi_0 = 0.0$, $\epsilon = 0.0$, 元期における惑星の黄経は 280.0 とした場合. 1 年の長さは 365 日.

図 7.4: 現実の惑星の大気上端における日平均太陽放射の時間-緯度分布. 横軸は1 年の開始日からの日数, 縦軸は緯度. 大気上端における太陽放射分布を1 時間ご とに計算し, 日平均をとった値を示している. dcpam5 の大気上端での恒星の放射 フラックスを与えるサブルーチンを用いて計算した. 水平解像度は T21. (a) 現実 の地球を模したパラメータ設定を用いた場合. $F_{00} = 1369 \text{ W/m}^{-2}$, $\theta_p = 23.44^\circ$, $\Phi_0 = 102.768413 + 180.0$, $\epsilon = 0.016713$, 元期における惑星の黄経は 99.403308 + 180.0. 1 年の長さは 365 日. (b) 現実の火星を模したパラメータ設定を用いた場 合. $F_{00} = 588.98 \text{ W/m}^{-2}$, $\theta_p = 25.19^\circ$, $\Phi_0 = 258.98$, $\epsilon = 0.0934$, 元期における惑 星の黄経は -10.342, 1 年の長さは 669 日.

$$\begin{vmatrix} A_{ins} & B_{ins} & A_{\chi} & B_{\chi} \\ 0.127 & 0.183 & 0.410 & 0.590 \end{vmatrix}$$

表 7.3: 現実の地球を想定した場合の
$$A_{ins}, B_{ins}, A_{\chi}, B_{\chi}$$
 の値

ちなみに、日平均日射分布・年平均日射分布に関する正確な表式は以下の通 りである. これらの式に基づき年平均・日平均日射分布の表式を構成できる はずであるがやっていない.

日平均日射分布の正確な表式

Liou (2002) によれば、日平均放射量 F_d は次のように計算される.

$$\overline{F_{day}}(\phi) = F_{00} \left(\frac{1}{r_S}\right)^2 \frac{S(r)}{\pi} \times (\cos\phi\sin h_0\cos\delta_S + h_0\sin\phi\sin\delta_S). \quad (7.171)$$

ここで、 $\delta \geq S(r)$ の1日の間での変化量は小さいとする近似を用いて いる.

日平均・年平均日射分布の正確な表式

Liou (2002) によれば、日平均・年平均日射分布は

$$\overline{F_y}(\phi) = \frac{F_{00}T_{orb}\tilde{S}(\phi,\epsilon)}{\pi(1-e^2)^{1/2}},$$
(7.172)

$$\tilde{S}(\phi,\epsilon) \equiv \frac{\sin\phi\sin\epsilon}{2\pi} \int_0^{2\pi} (h_0 - \tan h_0) \sin\lambda d\lambda \qquad (7.173)$$

で与えられる.

参考として, North (1975) で用いられている式も挙げておく. North (1975) では、大気上端における恒星の放射フラックスの年平均・日平均分布を

$$F_0(x) = \frac{F_{00}}{4} \{1 + S_2 P_2(x)\}, \qquad (7.174)$$

$$S_2 = -0.482 \tag{7.175}$$

として、エネルギーバランスモデルによる計算を行っている. ここで $x = \sin \phi$ である. S₂ の値は、Chýlek and Coakley (1975) の地球における長波放射の 吸収量の観測値に基づき決定したものである(当時はまだ短波放射に関する 衛星観測が無かったのだと思われる). これから, Ains, Bins に対応する量を 計算すると

$$A_{ins} = 0.1295, (7.176)$$

$$B_{ins} = 0.1808$$
 (7.177)

となる.

3. 特定の日の日射分布を用いる (perpetual run).

この場合には, $\sin \delta_S$ と r_S に定数値を与えて (7.159), (7.160) を用いて, 大気 上端における恒星からの放射フラックス分布を計算する.

4. 昼半球・夜半球固定の日射分布 (同期回転惑星設定)

この場合には、太陽直下点の経度 $\lambda_{subsolar}$ と経度 $\phi_{subsolar}$ を与える. $\phi_{subsolar} = 0$ の場合を考えて、天頂角を

$$\cos \chi = \cos \phi \cos(\lambda - \lambda_{subsolar}) \tag{7.178}$$

とする.これにより、恒星からの放射フラックス分布を

$$F_0(\phi) = F_{00} \cos \chi \tag{7.179}$$

で決定する.

7.8 放射計算で用いるパラメータ

放射計算で指定するべきパラメータの主なもの(いずれ網羅する予定)を以下に挙 げる.

 短波に対する大気アルベド: dcpam5のソースコードに記述されている値は 0.2.

現実の地球の場合では、短波に対する大気アルベドは 0.225 である. Kiehl and Trenberth (1997) による地球全体の熱収支の見積りでは、全球平均放射 量 342 W/m² のうち、77 W/m² が大気により反射される.

- 軌道の離心率: dcpam5 のソースコードに記述されている値は 0.0.
 現実の地球の場合, 軌道離心率は 0.0167 (理科年表による).
 現実の火星の場合, 軌道離心率は 0.0934 (Allison, 1997).
- 近日点黄経: dcpam5 のソースコードに記述されている値は 0.0.
 現実の地球の場合,近日点黄経は 102.924°(理科年表による)¹¹ dcpam で使用する場合には 102.768413 + 180.0 を与える.
 現実の火星の場合,近日点黄経は 250.98°(Allison, 1997).
- 太陽定数: dcpam5 のデフォルト値は 1380 W/m². この値は Ishiwatari et al. (2002) による. 以下に述べるように現実の地球の太陽定数よりもやや大 きい¹²

¹¹Duffett-Smith (1988) も確認するべし.

¹²デフォルト値も1370 W/m² にした方が良いかも.

現実の地球の場合、太陽定数は 1367 W/m² である (Hartmann, 1994). 太陽 が単位時間に発する放射エネルギー L_0 として 3.85×10^{26} W (理科年表)、太 陽地球間の平均距離 \overline{r}_S として 1 天文単位 (1.496×10^{11} m; 理科年表, 1995) を用いると、太陽定数は

$$\frac{L_0}{4\pi\bar{r}_S^2} = \frac{3.85 \times 10^{26}}{4 \times 3.142 \times (1.496 \times 10^{11})^2} = 1368.8 \text{W/m}^2 \tag{7.180}$$

と計算される.

現実の火星の場合、太陽定数は 588.98 W/m² (Kieffer et al., 1992)

7.9 参考文献

- Allison, M., 1997: Accurate analytic representations of solar time and seasons on Mars with applications to the Pathfinder/Surveyor missions. *Geophys. Res. Lett.*, 23, 1967-1970.
- Chýlek, P., Coakley, J. A. 1975: Analytical analysis of a Budyko-type climate model. J. Atmos. Sci., 32, 675–679
- Hartmann, D. L., 1994: Global physical climatology. Academic Press, pp411.
- Kieffer, H. H., Jakosky, B. M., Snyder, C. W., 1992: The planet Mars: from antiquity to the present. Mars edited by Kieffer, H; H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., The University of Arizona Press, 1–33.
- Kiehl, J. T., Trenberth, K. E., 1997: Earth's annual global mean energy bugdet. Bull. Am. Meteorol. Soc., 78, 197–208.
- Liou, K. N., 2002: An introduction to atmospheric radiation 2nd edition. Academic Press, pp583.
- North, G. R., 1975: Theory of energy-balance climate models. J. Atmos. Sci., **32**, 2033–2043.
- Toon, O. B., C. P. McKay, and T. P. Ackerman, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16287–16301.
- エリ・デ・ランダウ, イエ・エム・リフシッツ著, 広重 徹, 水戸 巌訳, 1974: 力学. 東京図書, pp214.

木下 宙著, 広重 徹, 水戸 巌訳, 1998: 天体と軌道の力学東京大学出版会, pp259.

Numaguti, A., 1982: 熱帯における積雲活動の大規模構造に関する数値実験, 東京 大学博士論文.

国立天文台編, 2010: 理科年表, 丸善株式会社.

第8章 積雲対流

8.1 はじめに

ほとんどの大気大循環モデルにおいては積雲を様に表現するだけの分解能を持た ないので、雲の発生する条件並びに雲が大気大循環に与える影響については何らか の方法で評価せざるを得ない.この評価方法は一般に積雲パラメタリゼーションと 呼ばれる.

現在の dcpam5 では湿潤対流調節 (Manabe *et al.*, 1965) と Relaxed Arakawa-Schubert スキーム (Moorthi and Suarez, 1992) を実装してある. また, そもそも 大気が過飽和状態にあれば降水が起こる. これを非対流性凝結 (大規模凝結) とい う. これについては別紙『非対流性凝結 (大規模凝結)』を参照のこと.

8.2 湿潤対流調節

8.2.1 離散表現

ここでは、湿潤対流調節 (e.g., Manabe et al., 1965)の定式化について解説する. な お、乾燥対流調節の定式化は、水蒸気がないという条件の下で、湿潤対流調節の式 から容易に導出できるため、ここに示す式は乾燥対流調節の解説にもなっている.

対流調節では,連続した2つの層において,次の条件が満たされる場合に調節を 行う.

1. 下層と上層の湿潤静的エネルギーの差が閾値より大きい(下層の湿潤静的エネ ルギーが上層のそれよりも大きい(温度減率が湿潤断熱減率よりも大きい)), 1 .

2. 相対湿度が閾値以上².

これらは、離散化した式で表現すると下のように表わされる.

$$C_p \hat{T}_k + Lq^*(\hat{T}_k) + g\hat{z}_k - \left(C_p \hat{T}_{k+1} + Lq^*(\hat{T}_{k+1}) + g\hat{z}_{k+1}\right) > C_p \Delta T_c, \quad (8.1)$$

$$\frac{\dot{q}_k}{q^*(\hat{T}_k, p_k)} \ge r_c, \qquad (8.2)$$

$$\frac{q_{k+1}}{q^*(\hat{T}_{k+1}, p_{k+1})} \ge r_c \tag{8.3}$$

ここで、 $^$ は調節前の値を表す. また、 $C_p\Delta T_c$ は不安定が起こる湿潤静的エネルギー 差の閾値であり、r_cは凝結が生じる相対湿度の閾値である.

調節時に満たす条件は、

$$\left\{ C_p \hat{T}_k + L \hat{q}_k \right\} \Delta m_k + \left\{ C_p \hat{T}_{k+1} + L \hat{q}_{k+1} \right\} \Delta m_{k+1} \\ = \left\{ C_p T_k + L q_k \right\} \Delta m_k + \left\{ C_p T_{k+1} + L q_{k+1} \right\} \Delta m_{k+1}$$
(8.4)

$$\Delta m_k = \frac{\Delta p_k}{g} \tag{8.5}$$

$$\Delta p_k = p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}} \tag{8.6}$$

$$C_p T_k + Lq_k + gz_k = C_p T_{k+1} + Lq_{k+1} + gz_{k+1}$$
(8.7)

$$q_k = q^*(T_k, p_k) \tag{8.8}$$

$$q_{k+1} = q^*(T_{k+1}, p_{k+1}) \tag{8.9}$$

である.

ここで、(8.7)を静水圧平衡の式を用いて整理すると、

$$C_p(T_k - T_{k+1}) + L(q^*(T_k) - q^*(T_{k+1})) - \frac{RT_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}}(p_k - p_{k+1}) = 0$$
(8.10)

¹単純には、この閾値はゼロである.しかし、実際にはモデル格子間隔内で温度・湿度の分布があ ることが考えられ,格子の平均エネルギー差がゼロ以上であっても,格子内で混合が起こることが 想像される.

²単純には、凝結が生じる相対湿度の閾値は1である。しかし、実際にはモデル格子間隔内で湿 度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こる ことが想像される.

となる. したがって, ... のからなる連立一次方程式を解けば良い. なお, $T_{k+\frac{1}{2}}$ は

$$T_{k+\frac{1}{2}} = \frac{T_k + T_{k+1}}{2} \tag{8.11}$$

と表現することにする.

ここで, q_k , q_{k+1} をテイラー展開し,

$$q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \left. \frac{\partial q^*}{\partial T} \right|_{T = \hat{T}_k} \Delta T_k$$
(8.12)

$$q_{k+1} = q^*(T_{k+1}, p_{k+1}) = q^*(\hat{T}_{k+1}, p_{k+1}) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_{k+1}} \Delta T_{k+1} \quad (8.13)$$

$$\Delta T_k = T_k - \hat{T}_k \tag{8.14}$$

$$\Delta T_{k+1} = T_{k+1} - \tilde{T}_{k+1} \tag{8.15}$$

として連立一次方程式を解くと、下の解が得られる.

$$\Delta T_{k} = \left\{ \Delta p_{k} \left(1 + \gamma_{k} \right) \right\}^{-1} \left\{ \frac{L}{C_{p}} \Delta Q - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \Delta T_{k+1} \right\}$$
(8.16)

$$\Delta T_{k+1} = \left[F_{k+\frac{1}{2}} \left\{ \Delta p_k \left(1 + \gamma_k \right) - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \right\} + \left(1 + \gamma_k \right) \left(1 + \gamma_{k+1} \right) \left(\Delta p_k + \Delta p_{k+1} \right) \right]^{-1} \\ \left[\Delta p_k \left(1 + \gamma_k \right) S_{k+\frac{1}{2}} + \left\{ 1 + \gamma_k - F_{k+\frac{1}{2}} \right\} \frac{L}{C_p} \Delta Q \right]$$
(8.17)

$$F_{k+\frac{1}{2}} = \frac{R}{C_p} \frac{p_k - p_{k+1}}{2p_{k+\frac{1}{2}}}$$
(8.18)

$$S_{k+\frac{1}{2}} = \hat{T}_k - \hat{T}_{k+1} + \frac{L}{C_p} \left\{ q^*(\hat{T}_k, p_k) - q^*(\hat{T}_{k+1}, p_{k+1}) \right\} - F_{k+\frac{1}{2}} \left(\hat{T}_k + \hat{T}_{k+1} \right)$$
(8.19)

$$\Delta Q = \Delta p_k \left\{ \hat{q}_k - q^*(\hat{T}_k, p_k) \right\} + \Delta p_{k+1} \left\{ \hat{q}_{k+1} - q^*(\hat{T}_{k+1}, p_{k+1}) \right\}$$

$$(8.20)$$

$$\gamma_k = \left. \frac{L}{C_p} \left. \frac{\partial q}{\partial T} \right|_{T = \hat{T}_k} \tag{8.21}$$

実際には、上記の解は q_k , q_{k+1} をテイラー展開して求めた近似解でしかなく、正確 には … を満たしていない. さらに、上記の定式化は、k 番目の層と k+1 番目の層 の混合を表記しているだけであるが、実際には 3 層以上の層にわたる混合も起こ りえる. そこで、上記の調節を何度か繰り返し行うことで、徐々に調節していく.

なお、降水量は、

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \Delta m_k \Delta q_k$$
$$\Delta q_k = q_k - \hat{q}_k \tag{8.22}$$

cumulus/cumulus.tex(cumulus/cumulus-adjust.tex.tex) 2013/10/08(地球流体電脳倶楽部)

である³.

以下は,現段階では湿潤対流調節には実装していない⁴. 乾燥対流調節には実装済 み (yot, 2013/09/07).

ここで、各層での凝結量、運動量や水蒸気以外の物質の混合を評価することを考える. そのために、運動量、水蒸気以外の物質は、熱と同様に混合するすることを仮定し、二層間の輸送質量を診断することにする⁵. 調節を行う時間間隔における、k層と k + 1層の間の交換質量を $M_{k+\frac{1}{2}}$ とすると、各層の温度および水蒸気には下の式が成り立つ.

$$\Delta m_k C_p T_k = \left(\Delta m_k - M_{k+\frac{1}{2}} \right) C_p \hat{T}_k + M_{k+\frac{1}{2}} \left\{ C_p \hat{T}_{k+1} + \frac{R \hat{T}_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}} (p_k - p_{k+1}) \right\} + \Delta m_k L (\Delta q_k)_c \tag{8.23}$$

$$\Delta m_{k+1}C_p T_{k+1} = M_{k+\frac{1}{2}} \left\{ C_p \hat{T}_k - \frac{R \hat{T}_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}} (p_k - p_{k+1}) \right\} + (\Delta m_{k+1} - M_{k+\frac{1}{2}}) C_p \hat{T}_{k+1} + \Delta m_{k+1} L (\Delta q_{k+1})_c$$
(8.24)

$$\Delta m_k q_k = (\Delta m_k - M_{k+\frac{1}{2}})\hat{q}_k + M_{k+\frac{1}{2}}\hat{q}_{k+1} - \Delta m_k (\Delta q_k)_c \tag{8.25}$$

$$\Delta m_{k+1}q_{k+1} = M_{k+\frac{1}{2}}\hat{q}_k + (\Delta m_{k+1} - M_{k+\frac{1}{2}})\hat{q}_{k+1} - \Delta m_{k+1}(\Delta q_{k+1})_c$$
(8.26)

ここで、 $(\Delta q_k)_c$ は k 層における凝結量 (凝結時に $(\Delta q_k)_c \ge 0$) である. これらより $M_{k+\frac{1}{2}}, (\Delta q_k)_c$ を求めると、

$$M_{k+\frac{1}{2}} = -\frac{C_p \Delta T_k + L \Delta q_k}{C_p (\hat{T}_k - \hat{T}_{k+1}) + L(\hat{q}_k - \hat{q}_{k+1}) - \frac{R \hat{T}_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}} (p_k - p_{k+1})} \Delta m_k (8.27)$$

$$(\Delta q_k)_c = (\hat{q}_{k+1} - \hat{q}_k) \frac{M_{k+\frac{1}{2}}}{\Delta m_k} - \Delta q_k$$
(8.28)

$$(\Delta q_{k+1})_c = -(\hat{q}_{k+1} - \hat{q}_k) \frac{M}{\Delta m_{k+1}} - \Delta q_{k+1}$$
(8.29)

となる. しかし, この $M_{k+\frac{1}{2}}$ をそのまま用いると不安定になることがあるため, 下 のように上限を与える.

$$M_{k+\frac{1}{2}} \le \frac{\Delta m_k \Delta m_{k+1}}{\Delta m_k + \Delta m_{k+1}} \tag{8.30}$$

³ここで,鉛直方向の和は上層から下層に向けて和を取ることにしている.これは,上層の方が凝結量が少ないためである.

⁴各層の凝結量が負になる可能性が心配なため.また,必要性を感じないため.

⁵実際には、運動量と熱の混合の程度は異なると考えられるが、それぞれを異なる程度で混合する目安がないため、ここでは同様に混合すると仮定する.また、ここで診断する輸送質量は、混合される質量の下限値に相当すると考えられる.

この上限は、混合後に風速や混合比などの勾配がゼロになる値に対応する、また、 計算の安定のために、 $M_{k+\frac{1}{2}}$ の分母が閾値よりも小さい場合には、 $M_{k+\frac{1}{2}}=0$ とす ることにする 6 . このように 6 して求めた $M_{k+\frac{1}{2}}$ を用いると, 調節後の風速, 水蒸気以 外の物質の混合比⁷は下のように表される.

$$U_k = \hat{U}_k + (\hat{U}_{k+1} - \hat{U}_k) \frac{M_{k+\frac{1}{2}}}{\Delta m_k}$$
(8.31)

$$\boldsymbol{U}_{k+1} = \hat{\boldsymbol{U}}_{k+1} - (\hat{\boldsymbol{U}}_{k+1} - \hat{\boldsymbol{U}}_k) \frac{M_{k+\frac{1}{2}}}{\Delta m_{k+1}}$$
(8.32)

$$q_k = \hat{q}_k + (\hat{q}_{k+1} - \hat{q}_k) \frac{M_{k+\frac{1}{2}}}{\Delta m_k}$$
(8.33)

$$q_{k+1} = \hat{q}_{k+1} - (\hat{q}_{k+1} - \hat{q}_k) \frac{M_{k+\frac{1}{2}}}{\Delta m_{k+1}}$$
(8.34)

Relaxed Arakawa-Schubert スキーム 8.3

Relaxed Arakawa-Schubert スキームについては, Moorthi and Suarez (1992) およ びその論文で引用している論文を参照すること.

参考文献 8.4

- Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle, Mon. Weather Rev., 93, 769-798.
- Moorthi, S., M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models, Mon. Wea. Rev., 120, 978-1002.

 $^{^{6}}$ 現状では、閾値は $1.0 \times 10^{-5}C_{p}$ としている. 7ここでは q と書くことにする.

cumulus/cumulus.tex(cumulus/cumulus-references.tex.tex) 2013/10/08(地球流体電脳倶楽部)

第9章 非対流性凝結 (大規模凝結)

9.1 離散表現

格子点の相対湿度が閾値を超えた場合, Manabe et al. (1965) に従い, 非対流性凝結 (以後, 大規模凝結と呼ぶ) が生じると考える¹. 凝結した水は速やかに降水となって落下し, 雨水の蒸発は考えない.

大規模凝結は下の条件が成り立つときに生じる.

$$\frac{\hat{q}_k}{q^*(\hat{T}_k, p_k)} \ge r_c \tag{9.1}$$

ここで、[^]は調節前の値を表し、*r*_cは凝結が生じる相対湿度の閾値である.

大規模凝結時に満たす条件は、

$$C_p \hat{T}_k + L \hat{q}_k = C_p T_k + L q_k \tag{9.2}$$

$$q_k = r_c q^*(T_k, p_k) \tag{9.3}$$

である.

 q_k を、テイラー展開して一次の項までとると、

$$q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_k} \Delta T_k$$
(9.4)

2013/10/08(地球流体電脳倶楽部)

¹単純には、凝結が生じる相対湿度の閾値は1である.しかし、実際にはモデル格子間隔内で湿度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こることが想像される.

となることを用いて整理すると,

$$T_k = \hat{T}_k + \Delta T_k \tag{9.5}$$

$$= \hat{T}_k + \frac{L\left\{\hat{q}_k - r_c q^*(\hat{T}_k, p_k)\right\}}{C_p + Lr_c \left.\frac{\partial q^*}{\partial T}\right|_{T = \hat{T}_k}}$$
(9.6)

$$q_k = \hat{q}_k + \Delta q_k \tag{9.7}$$

$$= r_c \left\{ q^*(\hat{T}_k, p_k) + \left. \frac{\partial q^*}{\partial T} \right|_{T = \hat{T}_k} \Delta T_k \right\}$$
(9.8)

となる.

ただし, (9.4) で q_k をテイラー展開で近似しているため, 上記の結果は近似値である. したがって, 上記の計算を繰り返し行い, 繰り返しの回数を l とすると, 値を

$$(T_k)_{l+1} = (T_k)_l + \Delta T_k \tag{9.9}$$

$$(q_k)_{l+1} = (q_k)_l + \Delta q_k \tag{9.10}$$

のように更新しながらより正しい結果に近付ける.

なお、この時、降水量は、

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \Delta q_k$$

= $-\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \left\{ (q_k)_{l_{max}+1} - \hat{q}_k \right\}$ (9.11)

である².

9.2 参考文献

Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93, 769–798.

lscond/lscond.tex

²ここで,鉛直方向の和は上層から下層に向けて和を取ることにしている.これは,上層の方が凝結量が少ないためである.

第10章 乱流過程

10.1 数理表現

鉛直拡散による運動方程式,熱力学の式,成分の式における変化率は下のようにそれぞれ下のように書くことができる.

$$\left(\frac{\partial u}{\partial t}\right)_{VD} = -\frac{1}{\rho} \frac{\partial F_{m,x}}{\partial z}$$
(10.1)

$$= g \frac{\partial F_{m,x}}{\partial p}, \qquad (10.2)$$

$$\left(\frac{\partial v}{\partial t}\right)_{VD} = g \frac{\partial F_{m,y}}{\partial p}, \qquad (10.3)$$

$$\left(\frac{\partial T}{\partial t}\right)_{VD} = \frac{g}{C_p} \frac{\partial F_h}{\partial p}, \qquad (10.4)$$

$$\left(\frac{\partial q}{\partial t}\right)_{VD} = g\frac{\partial F_q}{\partial p}.$$
(10.5)

ここで、 $F_{m,x}$ 、 $F_{m,y}$ 、 F_h 、 F_q はそれぞれ東西方向、南北方向の運動量フラックス、熱フラックス、水蒸気(物質)のフラックスであり、下のように表現される.

$$F_{m,x} = -\rho K_m \frac{\partial u}{\partial z}, \qquad (10.6)$$

$$F_{m,y} = -\rho K_m \frac{\partial v}{\partial z}, \qquad (10.7)$$

$$F_h = -C_p P \rho K_h \frac{\partial \theta}{\partial z}, \qquad (10.8)$$

$$F_q = -\rho K_q \frac{\partial q}{\partial z}.$$
 (10.9)

ただし,

$$\theta = \frac{T}{P}, \tag{10.10}$$

$$P = \left(\frac{p_{00}}{p}\right)^{\kappa}, \tag{10.11}$$

$$\kappa = \frac{R}{C_p} \tag{10.12}$$

$$\rho = \frac{p}{RT_v} \tag{10.13}$$

ここで、 T_v は仮温度である. 上部境界では

$$F_{m,x} = 0, (10.14)$$

$$F_{m,y} = 0, (10.15)$$

$$F_h = 0,$$
 (10.16)

$$F_q = 0 \tag{10.17}$$

とし、下部境界では、バルク法を用いてフラックスを評価する場合には、

$$F_{m,x} = -\rho C_d |\boldsymbol{v}| u, \qquad (10.18)$$

$$F_{m,y} = -\rho C_d |\boldsymbol{v}| v, \qquad (10.19)$$

$$F_h = -C_p P \rho C_h |\boldsymbol{v}| (\theta - \theta_s), \qquad (10.20)$$

$$F_q = -\epsilon \rho C_q |\boldsymbol{v}| (q - q_s^*)$$
(10.21)

とし、摩擦の時定数 (運動量フラックスに対して) や一定値 (熱や物質フラックス に対して) を与える場合には、

$$F_{m,x} = -\frac{1}{\tau_f} u, (10.22)$$

$$F_{m,y} = -\frac{1}{\tau_f}v,$$
 (10.23)

$$F_h = F_{h,s}, (10.24)$$

$$F_q = F_{q,s} \tag{10.25}$$

とする. ただし, (10.21) に示した下部境界における物質のフラックス F_q は水蒸気のフラックスである. ここで, p_{00} は基準圧力である. K_m , K_h , K_q はそれぞれ運動量, 熱, 物質の拡散係数である. C_d , C_h , C_q はそれぞれ運動量, 熱, 水蒸気のバルク係数である. また, τ_f は下部境界における摩擦の時定数, $F_{h,s}$, $F_{q,s}$ は固定する熱フラックス, 水蒸気フラックスである. ϵ は地表面の湿潤度である.

 K_m , K_h , K_q , はそれぞれ Mellor and Yamada (1982) レベル 2 の方法に従って評価する. これら拡散係数の具体的な評価方法については 第 10.1.1 節で述べる. C_d ,

 C_h, C_q , は Monin-Obukhov の相似則に基づくパラメタリゼーションによって評価 する. これらバルク係数の具体的な評価方法については第 10.1.3 節, 第 10.1.4 節 で 述べる.

10.1.1 乱流運動エネルギー,鉛直拡散係数 1 (Mellor and Yamada level 2)

Mellor and Yamada (1982) レベル 2 の方法を用いる場合, 鉛直拡散係数, K_m , K_h , K_q , および乱流運動エネルギー, $\frac{q^2}{2}$, は診断的に計算される.

Mellor and Yamada (1974, 1982) レベル 2 の方法に従って鉛直拡散係数, K_m , K_h , K_q , を評価する場合, 下のように表現される.

$$K_m = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S'_M, \qquad (10.26)$$

$$K_h = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S'_H, \qquad (10.27)$$

$$K_q = K_h. (10.28)$$

ここで, *l* は混合距離であり,

$$l = \frac{k(z - z_s)}{1 + k(z - z_s)/l_0}$$
(10.29)

の表式を用いる.ここで、 z_s は地表面高度、 l_0 は支配混合距離¹、kはカルマン定数 (Kármán's constant)である.また、

$$S'_{M} = B_{1}^{\frac{1}{2}} (1 - R_{f})^{\frac{1}{2}} S_{M}^{\frac{1}{2}} S_{M}, \qquad (10.30)$$

$$S'_{H} = B_{1}^{\frac{1}{2}} \left(1 - R_{f}\right)^{\frac{1}{2}} S_{M}^{\frac{1}{2}} S_{H}$$
(10.31)

である. S_H, S_M は,

$$S_H = \begin{cases} \frac{\alpha_1 - \alpha_2 R_f}{1 - R_f} & (R_f < R_{f,critical}) \\ S_{H,min} & (R_f \ge R_{f,critical}) \end{cases},$$
(10.32)

$$S_M = \begin{cases} \frac{\beta_1 - \beta_2 R_f}{\beta_3 - \beta_4 R_f} S_H & (R_f < R_{f,critical}) \\ S_{M,min} & (R_f \ge R_{f,critical}) \end{cases} .$$
(10.33)

1(2011-8-17 石渡) この用語は一般的か?

である². ここで, R_f はフラックスリチャードソン数 (flux Richardson number)

$$R_{f} = \frac{1}{2\beta_{2}} \left\{ \beta_{1} + \beta_{4}R_{i} - \sqrt{\left(\beta_{1} + \beta_{4}R_{i}\right)^{2} - 4\beta_{2}\beta_{3}R_{i}} \right\}$$
(10.34)

であり, R_i はバルクリチャードソン数 (bulk Richardson number)

$$R_{i} \equiv \frac{\frac{g}{\theta_{v}} \frac{\partial \theta_{v}}{\partial z}}{\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|^{2}}$$
(10.35)

である³. $R_{f,critical}$ は臨界リチャードソン数であり,

$$R_{f,critical} = \frac{\gamma_1}{\gamma_1 + \gamma_2} \tag{10.36}$$

である.

なお、乱流運動エネルギー、 $\frac{q^2}{2}$,は、

$$\frac{q^2}{2} = \frac{1}{2} B_1 l^2 (1 - R_f) \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|^2 S_M \qquad (10.37)$$

のように表される4.

$$K_m = lqS_M, (10.38)$$

$$K_h = lqS_H, (10.39)$$

このとき、(10.61)、(10.62) と同じ形となる. いずれ統一したい.

 $^{^{2}}$ (2011-08-26 石渡) オリジナルの Mellor and Yamada (1974) では臨界リチャードソン数を使った議論はなされていない. この場合分けに関しては,離散化の部分で記述するべきかもしれない. (2013-08-10 高橋) Mellor and Yamada (1974), p.1801, 左段, に, フラックスリチャードソン数が臨界値を超えた場合に乱流混合が起こらないと述べられている. この記述に対応する処理. 記述に正確に対応させるためには $S_{M,min} = 0$ となる.

 $^{^{3}}$ ここでは、水蒸気の効果を考慮して仮温位 θ_{v} を用いている.

⁴(2013-08-13 高橋) Mellor and Yamada level 2.5 の表現との対応を考えた場合, (10.26), (10.27) の拡散係数は、この q を使って下のように表現する方が良いと思う.

また,

$$\alpha_1 = 3A_2\gamma_1, \tag{10.40}$$

$$\alpha_2 = 3A_2(\gamma_1 + \gamma_2), \qquad (10.41)$$

$$\beta_1 = A_1 B_1 (\gamma_1 - C_1), \qquad (10.42)$$

$$\beta_2 = A_1 \left[B_1 \left(\gamma_1 - C_1 \right) + 6A_1 + 3A_2 \right], \qquad (10.43)$$

$$\beta_3 = A_2 B_1 \gamma_1, \tag{10.44}$$

$$\beta_4 = A_2 \left[B_1 \left(\gamma_1 + \gamma_2 \right) - 3A_1 \right], \qquad (10.45)$$

$$\gamma_1 = \frac{1}{3} - \frac{2A_1}{B_1}, \tag{10.46}$$

$$\gamma_2 = \frac{B_2}{B_1} + \frac{6A_1}{B_1} \tag{10.47}$$

であり,

$$(A_1, B_1, A_2, B_2, C_1) = (0.92, 16.6, 0.74, 10.1, 0.08)$$
(10.48)

である (Mellor and Yamada, 1982).

10.1.2 乱流運動エネルギー, 鉛直拡散係数 2 (Mellor and Yamada level 2.5)

Mellor and Yamada (1982) レベル 2.5 の方法を用いる場合, 鉛直拡散係数, K_m , K_h , K_q , は, 予報変数である乱流運動エネルギー, $\frac{q^2}{2}$, から計算される. 乱流運動エ

ネルギーの支配方程式は下のように表される⁵.

$$\frac{d}{dt}\left(\frac{q^2}{2}\right) = -\frac{1}{\rho}\frac{\partial F_{TKE}}{\partial z} + P_s + P_b - \epsilon_{TKE}$$
(10.52)

$$= g \frac{\partial F_{TKE}}{\partial p} + P_s + P_b - \epsilon_{TKE}$$
(10.53)

$$F_{TKE} = -\rho K_{TKE} \frac{\partial}{\partial z} \left(\frac{q^2}{2}\right) \tag{10.54}$$

$$P_s = K_M \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 \tag{10.55}$$

$$= K_M \left\{ \left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right\}$$
(10.56)

$$P_b = -K_H \frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z} \tag{10.57}$$

$$\epsilon_{TKE} = \frac{q^3}{B_1 l} \tag{10.58}$$

ただし, P_s , P_b は, (10.71), (10.72) において, 別の形で表現される.

なお, $\frac{q^2}{2}$ の境界条件は下のようになる.

$$\frac{q^2}{2} = \frac{B_1^{\frac{5}{3}} u_\tau^2}{2} \qquad \text{at} \quad z = 0 \qquad (10.59)$$

$$\frac{q^2}{2} = 0 \qquad \text{at} \quad z = \infty \tag{10.60}$$

ここで、*u_τ*は下部境界における摩擦速度である.

鉛直拡散係数, K_m , K_h , K_q , K_{TKE} は下のように表現される.

$$K_m = lqS_M, (10.61)$$

$$K_h = lqS_H, (10.62)$$

$$K_q = K_h. \tag{10.63}$$

$$K_{TKE} = lqS_{TKE}, (10.64)$$

⁵P_s, P_b の元の形は以下.

$$P_s = -\overline{u'w'}\frac{\partial u}{\partial z} - \overline{v'w'}\frac{\partial v}{\partial z}, \qquad (10.49)$$

$$P_b = \frac{g}{\theta} \overline{w'\theta}. \tag{10.50}$$

$$\epsilon_{TKE} = \frac{q^3}{\Lambda_1} \tag{10.51}$$

ここで,lは混合距離であり, (10.29) により評価する. ただし,lは (経験的に?) 以下のような制限が必要となる⁶.

$$l \leq \frac{0.53q}{N} = 0.53 \sqrt{\frac{2}{N^2} \left(\frac{q^2}{2}\right)},$$
 (10.65)

$$N^2 = \frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}.$$
 (10.66)

また, S_M , S_H は, Galperin et al. (1988) による修正を考慮し, 下のように与えられる.

$$S_M = \frac{A_1 \left(1 - 3C_1 - \frac{6A_1}{B_1} \right) + 9A_1 (A_2 + 2A_1)G_H S_H}{1 - 9A_1 A_2 G_H}, \quad (10.67)$$

$$S_H = \frac{A_2 \left(1 - \frac{6A_1}{B_1}\right)}{1 - 3A_2 (6A_1 + B_2)G_H},$$
(10.68)

また, $S_{TKE} = 0.2$ である⁷. ここで, G_H は

$$G_H = -\frac{l^2}{q^2} \frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}$$
(10.69)

であり、上記の式には表れないが、

$$G_M = \frac{l^2}{q^2} \left\{ \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \right\}$$
(10.70)

である⁸. また、これら S_M 、 S_H を用いると、(10.56)、(10.56) の P_s 、 P_b は下のよう に書ける.

$$P_s = K_M \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 = lq S_M \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 = 2^{\frac{1}{2}} l S_M \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 \left(\frac{q^2}{2}\right)^{\frac{1}{2}}$$
(10.71)

$$P_b = -K_H \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right) = -lqS_H \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right) = -2^{\frac{1}{2}} lS_H \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right) \left(\frac{q^2}{2}\right)^{\frac{1}{2}} 10.72)$$

また、計算の安定性を考慮し、実際には G_H に下のような制限を与える⁹.

$$-0.53^2 \le G_H \le \frac{1}{A_2(12A_1 + B_1 + 3B_2)}.$$
 (10.73)

定数 $(A_1, B_1, A_2, B_2, C_1)$ は(10.48) で与えられる.

 6 この制限は、安定成層下での乱流渦のサイズの制限を反映している (Galperin et al., 1988).

2013/10/08(地球流体電脳倶楽部)

⁷Mellor and Yamada (1982), p.862, **左段参照**.

 $^{^{8}}S_{M}, S_{H}$ が G_{H} のみに依存し, G_{M} に依存しないのは, Galperin et al. (1988) による修正の結果である. これにより計算が安定する.

 $^{{}^{9}}G_{H}$ の下限は lの制限 ((10.65)) に起因しており、上限はレベル 2 (の条件) において $G_{M} \ge 0$ となる条件に起因している (Galperin et al., 1988).

10.1.3 バルク係数 1 (Louis et al., 1982)

Louis et al. (1982) の方法によると、バルク係数は下のように評価される.

中立もしくは安定 $(R_i \ge 0)$ な場合

中立,もしくは安定 $R_i \ge 0$ な場合には,バルク係数は下のように評価する¹⁰.

$$C_d = a_m^2 \frac{1}{1 + 10R_i \frac{1}{\sqrt{1+5R_i}}},$$
(10.77)

$$C_h = a_h a_m \frac{1}{1 + 15R_i \sqrt{1 + 5R_i}}, \qquad (10.78)$$

$$a_m = \frac{k}{\log\left(\frac{z+z_{0,m}}{z_{0,m}}\right)}.$$
 (10.79)

$$a_h = \frac{k}{\log\left(\frac{z+z_{0,h}}{z_{0,h}}\right)}.$$
 (10.80)

ここで, *z* は地面からの距離, *k* はカルマン定数, *z*_{0,*m*}, *z*_{0,*h*} はそれぞれ風速, 温度に 対する粗度長である¹¹. なお, *z* が基準等ポテンシャル面 (地球の場合はジオイド) からの距離ではないことに注意.

¹⁰なお,元論文 (Louis et al., 1982) では下のように表記されている.

$$C_d = a^2 \frac{1}{1 + 2bR_i \frac{1}{\sqrt{1 + dR_i}}}$$
(10.74)

$$C_{h} = a^{2} \frac{1}{1 + 3bR_{i}\sqrt{1 + dR_{i}}}$$
(10.75)

$$a = \frac{k}{\log\left(\frac{z+z_0}{z_0}\right)} \tag{10.76}$$

ここで, b = 5, d = 5 である.

¹¹Louis et al. (1982) では、風速と温度に対する粗度長には同じ値を用いているようである. ここでは、それぞれ別の値を用いることを許す形で記述しておく.

不安定 $(R_i < 0)$ な場合

不安定 $R_i < 0$ な場合には、バルク係数は下のように評価する^{12,13}.

$$C_d = a_m^2 \left(1 - \frac{10R_i}{1 + 75a_m^2 \sqrt{\frac{z + z_{0,m}}{z_{0,m}}} |R_i|} \right),$$
(10.83)

$$C_h = a_h a_m \left(1 - \frac{15R_i}{1 + 75a_m a_h \sqrt{\frac{z + z_{0,h}}{z_{0,h}} |R_i|}} \right).$$
(10.84)

10.1.4 バルク係数 2 (Beljaars and Holtslag, 1991; Beljaars, 1994)

まとまっていない (2013/08/20, yot).

Beljaars and Holtslag (1991) の方法によると、バルク係数は下のように評価される¹⁴.

$$C_{d} = \left\{ \frac{k}{\log\left(\frac{z+z_{0,m}}{z_{0,m}}\right) - \Psi_{M}\left(\frac{z+z_{0,m}}{L}\right) + \Psi_{M}\left(\frac{z_{0,m}}{L}\right)} \right\}^{2}$$
(10.85)

$$C_{h} = \frac{k}{\log\left(\frac{z+z_{0,m}}{z_{0,m}}\right) - \Psi_{M}\left(\frac{z+z_{0,m}}{L}\right) + \Psi_{M}\left(\frac{z_{0,m}}{L}\right)} \frac{\log\left(\frac{z+z_{0,h}}{z_{0,h}}\right) - \Psi_{H}\left(\frac{z+z_{0,h}}{L}\right) + \Psi_{H}\left(\frac{z_{0,h}}{L}\right)}$$
(10.85)

ここで、ここで、zは地面からの距離、kはカルマン定数、 $z_{0,m}$ 、 $z_{0,h}$ はそれぞれ風速

¹²なお, 元論文 (Louis et al., 1982) では下のように表記されている.

$$C_d = a^2 \left(1 - \frac{2bR_i}{1 + 3a^2 bc \sqrt{\frac{z+z_0}{z_0}} |R_i|} \right), \qquad (10.81)$$

$$C_h = a^2 \left(1 - \frac{3bR_i}{1 + 3a^2 bc \sqrt{\frac{z + z_0}{z_0} |R_i|}} \right).$$
(10.82)

ここで, *b* = 5, *c* = 5 である.

¹⁴ここで書いている C_h は、粗度長部分が Beljaars (1994) の C_h とは異なっている. これは Beljaars (1994) の誤植か、自分がわかっていないのか? たぶん誤植. (yot, 2013/09/08)

¹³ここでは、仮温位を使うことで水蒸気の効果を考慮している.

と温度に対する粗度長である. L は Monin-Obukhov 長さであり,

$$L = -\frac{1}{k} \frac{\left|\overline{u'w'}\right|^{\frac{3}{2}}}{\frac{g}{\theta_v} \left(\overline{w'\theta'_v}\right)}$$
(10.87)

である¹⁵. Ψ_M , Ψ_H の詳細は下に示す. なお, z が基準等ポテンシャル面 (地球の場合はジオイド) からの距離ではないことに注意.

¹⁵Beljaars and Holtslag (1991) では水蒸気の効果を考慮しておらず、 θ で定式化されてきた. ここでは、 θ を用いた式と θ_v を用いた式の関係を考えてみる. 水蒸気の効果を無視すると、下のように書くことができる.

$$\frac{\tau}{\rho} = -u_*^2 = -C_m U^2 \tag{10.88}$$

$$Q_0 = -u_*\theta_* = -C_h|U|(\theta - \theta_s)$$
(10.89)

$$\frac{u_*\theta_*}{u_*^2} = \frac{C_h |U| (\theta - \theta_s)}{C_m U^2}$$
(10.90)

$$\frac{\theta - \theta_s}{U^2} = \frac{u_* \theta_* C_m |U|}{u_*^2 C_h} \tag{10.91}$$

$$= \frac{\theta_* C_m |U|}{u_* C_h} \tag{10.92}$$

$$R_b = \frac{g}{\theta} z \frac{\theta - \theta_s}{U^2} \tag{10.93}$$

$$L = -\frac{1}{k} \frac{(\overline{u'w'})^{1.3}}{\frac{g}{\theta} (\overline{w'\theta'})}$$
(10.94)

$$= \frac{1}{k} z R_b^{-1} \frac{C_m^{1.5}}{C_h} \tag{10.95}$$

ここで, θ を θ_v で置き換えても,

$$L = \frac{1}{k} z R_b^{-1} \frac{C_m^{1.5}}{C_h}$$
(10.96)

のように同じ形で書ける.ただし、このとき、

$$L = -\frac{1}{k} \frac{\left(\overline{u'w'}\right)^{1.5}}{\frac{g}{\theta_v} \left(\overline{w'\theta'_v}\right)}$$
(10.97)

$$Q_0 = -u_*\theta_* = -C_h |U|(\theta_v - \theta_{v,s})$$
(10.98)

$$R_b = \frac{g}{\theta_v} z \frac{\theta_v - \theta_{v,s}}{U^2}$$
(10.99)

である.

ただし、ここでは、 $\overline{w'\theta'}$ の θ を単純に θ_v で置き換えることで、 $\overline{w'\theta'_v}$ を計算しているが、正しく は下のように書けるのだろう.

$$\theta_v = \theta(1 + \alpha q_v) \tag{10.100}$$

$$\theta'_v = \overline{\theta}\alpha q'_v + \theta'(1 + \alpha \overline{q_v}) + \theta'\alpha q'_v \tag{10.101}$$

$$\overline{w'\theta'_v} = \overline{w'\overline{\theta}\alpha q'_v} + \overline{w'\theta'(1+\alpha\overline{q_v})} + \overline{w'\theta'\alpha q'_v}$$
(10.102)

$$= \overline{w'\theta'} + \alpha \overline{q_v} \overline{w'\theta'} + \alpha \overline{\theta w'q'_v} + \alpha \overline{w'\theta'q'_v}$$
(10.103)

$$\sim \quad \overline{w'\theta'} + \alpha \overline{q_v} \overline{w'\theta'} + \alpha \overline{\theta} \overline{w'q'_v} \tag{10.104}$$

また, Beljaars (1994) によると,

$$|\boldsymbol{v}| = \left\{ u^2 + v^2 + (\beta w_*)^2 \right\}^{\frac{1}{2}}$$
(10.112)

として、特に自由対流レジームにおける対流を想定し、それに伴う風速を考慮する. ここで、 β は定数であり、 w_* は下のように与える¹⁶.

$$w_* = \left\{ z_{BL} \frac{g}{\theta} \overline{w'\theta'_v} \right\}^{\frac{1}{3}}$$
(10.114)

ここで, *z_{BL}* は境界層高度である.

しかし, Beljaars (1994) では,

$$\overline{w'\theta'_v} = \overline{w'\theta'} + \alpha \overline{\theta} \overline{w'q'_v}$$
(10.105)

としている.右辺第二項は落としているのだろう. これをさらにバルク式を使って変形すると,

$$\overline{w'\theta'_v} = -C_h |U|(\theta - \theta_s) - \alpha \overline{\theta} \epsilon C_q |U|(q - q_s)$$
(10.106)

$$= -C_h |U|(\theta - \theta_s) - \alpha \theta \epsilon C_q |U|(q - q_s)$$
(10.107)

となる. ここで, $\overline{\theta}$ の実態が θ であることに注意. ここで $C_h = C_q$ とし, $\overline{\theta} = \theta$ と書くことにすると,

$$\overline{w'\theta'_v} = -C_h |U| \{ \theta (1 + \alpha \epsilon q) - \theta_s - \theta \alpha \epsilon q_s \}$$
(10.108)

さらに, $\theta_s = \theta$ とすると,

$$\overline{w'\theta'_v} = -C_h|U| \left\{ \theta \left(1 + \alpha \epsilon q\right) - \theta_s \left(1 + \alpha \epsilon q_s\right) \right\}$$
(10.109)

$$\overline{w'\theta'_v} = -C_h |U| \left\{ \theta \left(1 + \alpha q \right) - \theta_s \left(1 + \alpha q_s \right) \right\}$$
(10.110)

$$= -C_h |U| \left(\theta_v - \theta_{s,v,sat}\right) \tag{10.111}$$

ここで、 $\theta_{s,v,sat}$ は惑星表面温度での飽和仮温位 (?) である.

したがって, $\overline{w'\theta'}$ の θ を単純に θ_v で置き換えたものと, 正しい (?) $\overline{w'\theta'_v}$ とはいくつかの点で違いがある.

¹⁶Beljaars (1994) では下のように書かれている.

$$w_* = \left\{ z_{BL} \frac{g}{T} \overline{w' \theta'_v} \right\}^{\frac{1}{3}}$$
(10.113)

ここでは、地球以外の条件への適応も想定し、Tは θ としておく.

中立もしくは安定 $(R_i \ge 0)$ な場合の Ψ_M, Ψ_H

中立,もしくは安定 $R_i \ge 0$ な場合には, Ψ_M , Ψ_H は下のように評価する

$$\Psi_M(x) = \log\left\{\frac{(1+x)^2(1+x^2)}{8}\right\} - 2\tan^{-1}x + \frac{\pi}{2}$$
(10.115)

$$\Psi_H(x) = \log\left\{\frac{(1+x^2)^2}{4}\right\}$$
(10.116)

$$x = (1 - 16\zeta)^{\frac{1}{4}} \tag{10.117}$$

$$\zeta = \frac{z}{L} \tag{10.118}$$

不安定 $(R_i < 0)$ な場合の Ψ_M, Ψ_H

不安定 $R_i < 0$ な場合には, Ψ_M , Ψ_H は下のように評価する

$$\Psi_M(x) = -a\zeta - b\left(\zeta - \frac{c}{d}\right)\exp\left(-d\zeta\right) - \frac{bc}{d}$$
(10.119)

$$\Psi_H(x) = -\left(1 + \frac{2}{3}a\zeta\right)^{\frac{3}{2}} - b\left(\zeta - \frac{c}{d}\right)\exp\left(-d\zeta\right) - \frac{bd}{d} + 1 \quad (10.120)$$

ここで, a, b, c, d は定数であり, a = 1, b = 0.667, c = 5, d = 0.35 である.

10.1.5 乱流過程で用いられるパラメータの値

- 支配混合距離 l₀: dcpam の現在 (2010/02/20) のデフォルト値は l₀ = 300 m である.
- カルマン定数 k: dcpam のデフォルト値は k = 0.4.

カルマン定数の値は1950年代から1980年代までに行われたいくつかの観 測に基づいて決定されている(近藤,1982). Businger et al (1971) はカンザ ス洲の麦畑における観測で0.35という値を得た. これにより,0.35という値 が広く使われたのだが, Businger et al (1971)では,風速計付近に設置した観 測用電子機器を収めた箱の影響があることや三杯風速計の補正が十分ではな いことなどがわかった. その後,近藤純正氏のグループが乾燥した水田で観 測を行い,0.39という値を得た(Kondo and Sato, 1982). 木田・柳瀬 (1999) には、Dean (1978)¹⁷ が実験的にカルマン定数の値として 0.41 を得た、と記載されている.

● 粗度長 z₀

dcpam において陸面と海洋の差のみ考慮する場合には、陸面では $z_0 = 0.1 \text{ m}$ 、 海洋上では $z_0 = 10^{-4} \text{ m}$ というデフォルト値が設定されている.

粗度長は地表面の状態によって変化する. Sheppard (1947) は屋外観測によってに各種の表面における粗度長を決定した. そこでは、滑らかな表面上 (氷や滑らかな雪など) において $z_0 = 9 \times 10^{-6}$ m, 成長した根菜類が存在する地面において $z_0 = 0.139$ m という数値が示されている (Shpeppard, 1947 の Table 2). Sheppard (1947) が決定した粗度長の値は Sutton (1953) ¹⁸ および 島貫 (1982) ¹⁹ にも引用されている.

10.2 離散表現

dcpam では,鉛直拡散は陰解法を用いて計算する.運動量,熱の鉛直拡散方程式は 下のように離散化する.

$$\frac{u_k^{t+\Delta t} - u_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,x,k+\frac{1}{2}}^{t+\Delta t} - F_{m,x,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}},$$
(10.121)

$$\frac{v_k^{t+\Delta t} - v_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,y,k+\frac{1}{2}}^{t+\Delta t} - F_{m,y,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}},$$
(10.122)

$$\frac{T_k^{t+\Delta t} - T_k^{t-\Delta t}}{2\Delta t} = \frac{1}{C_p} g \frac{F_{h,k+\frac{1}{2}}^{t+\Delta t} - F_{h,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}.$$
(10.123)

一方,水蒸気の鉛直拡散に関しては,最下層以外 $(k \ge 2)$ では下のように離散化される.

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}.$$
(10.124)

¹⁸Sutton, O.G., 1953: Micrometeorology. McGrawHill. 333pp.

¹⁷Dean, R. B., 1978: Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow *J. Fluids Eng.*, **100**, 215–213.

¹⁹島貫 陸, 1982: 乱流と気象 -変動とうずの種々相- (気象学のプロムナード 6), 東京堂出版.

一方,最下層 (k = 1) においては、陰解法を用いて計算する場合の効率性を考慮し、
 2 つの離散化方法を用意している.1 つは、

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}} \quad (k=1)$$
(10.125)

であり,1 つは,

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}} \quad (k=1)$$
(10.126)

である.前者の場合,最下層の離散化方法は最下層以外の層 $(k \ge 2)$ と同じように離散化される.後者の場合,惑星表面のフラックスのみ $t - \Delta t$ の時刻の値が使われる²⁰.なお,水蒸気以外の熱収支に関わらない物質の鉛直拡散は, (10.126) と同様に離散化する.

拡散フラックスは下のように離散化される.

$$F_{m,x,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} \left(u_{k+1} - u_k \right), \qquad (10.127)$$

$$F_{m,y,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} \left(v_{k+1} - v_k \right), \qquad (10.128)$$

$$F_{h,k+\frac{1}{2}} = -C_p P_{k+\frac{1}{2}} (TC)_{h,k+\frac{1}{2}} \left(\frac{T_{k+1}}{P_{k+1}} - \frac{T_k}{P_k} \right), \qquad (10.129)$$

$$F_{q,k+\frac{1}{2}} = -(TC)_{q,k+\frac{1}{2}} (q_{k+1} - q_k).$$
(10.130)

ここで、 $(TC)_{m,k+\frac{1}{2}}, (TC)_{h,k+\frac{1}{2}}, (TC)_{q,k+\frac{1}{2}}$ は以下のように表現される²¹.

²⁰後者の方法を利用しなければいけないのは、陰解法で離散化した結果を整理して得られる連立 一次方程式の行列を三重対角行列にするため、そして、有限の土壌水分を扱うためである.

地表面における上向き熱フラックスは、大気側から見れば、下部境界において大気に入る熱フラックスであり、この意味で、大気中の熱収支は地表面および地下の土壌の熱収支と関係している. さらに、水蒸気が存在する系では、地表面の熱収支は、惑星表面における水蒸気の蒸発と凝結を介して水蒸気の収支とも関係している. このため、本来は、熱の鉛直拡散、惑星表面の熱収支、地下の土壌の熱拡散、水蒸気の鉛直拡散を陰解法で計算するためには、すべての方程式を連立して計算しなければならない. 素直に定式化すると、これらすべてを含む連立一次方程式の行列は三重対角行列にならず、計算量が多くなってしまう. 三重対角行列にするためには、熱の鉛直拡散、地下の土壌の熱拡散(惑星表面の熱収支を含む)、水蒸気の鉛直拡散のうちの一つを分離して解く必要があり、現在のdcpamの定式化では、水蒸気の鉛直拡散を分離して解くことにしている($t - \Delta t$ の時刻の惑星表面の水蒸気フラックスを用いることで、水蒸気の鉛直拡散は分離される).

また、上では触れていないが、本来は土壌水分量の収支も関係している.しかし、有限の土壌水分 量を考える場合、土壌が含む以上の量の水蒸気が蒸発することはないが、そのような条件を連立一 次方程式に課すことは難しく、現実的にはそれを連立して解くことはできない.このことも、上で 書いたように水蒸気の鉛直拡散を分離して解く理由である.

一方,地下の土壌の熱拡散を計算しないモデルにおいては,熱の鉛直拡散,惑星表面の熱収支,水 蒸気の鉛直拡散を連立して得られる行列は三重対角行列になるため,問題は起こらない.これが前 者の式が用いられる場合である.

²¹コードのコメントでは, (TC) に「輸送係数」と名前が付けられている.
上部境界では,

$$(TC)_{m,k_{max}+\frac{1}{2}} = 0,$$
 (10.131)

$$(TC)_{h,k_{max}+\frac{1}{2}} = 0, (10.132)$$

$$(TC)_{q,k_{max}+\frac{1}{2}} = 0. (10.133)$$

 $k = k_{max}$ のとき、

 $F_{m,x,k_{max}+\frac{1}{2}} = 0, (10.134)$

$$F_{m,y,k_{max}+\frac{1}{2}} = 0, (10.135)$$

$$F_{h,k_{max}+\frac{1}{2}} = 0, (10.136)$$

$$F_{q,kamx+\frac{1}{2}} = 0 \tag{10.137}$$

となる.

 $2 \le k \le k_{max} - 1$ のとき、

$$(TC)_{m,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{m,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}, \qquad (10.138)$$

$$(TC)_{h,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{h,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}, \qquad (10.139)$$

$$(TC)_{q,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{q,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}.$$
 (10.140)

 $\rho_{k+\frac{1}{2}}$ は次式を用いて評価する.

$$\rho_{k+\frac{1}{2}} = \frac{p_{k+\frac{1}{2}}}{RT_{v,k+\frac{1}{2}}} \tag{10.141}$$

ここで T_v は仮温度である. k = 1 のとき, バルク法を用いてフラックスを評価する場合には,

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1, \qquad (10.142)$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1, \qquad (10.143)$$

$$F_{h,k-\frac{1}{2}} = -C_p P_{k-\frac{1}{2}} (TC)_{h,k-\frac{1}{2}} \left(\frac{T_k}{P_k} - \frac{T_s}{P_{k-\frac{1}{2}}} \right), \qquad (10.144)$$

$$F_{q,k-\frac{1}{2}} = -\epsilon (TC)_{q,k-\frac{1}{2}} (q_k - q_s^*).$$
(10.145)

$$(TC)_{m,k-\frac{1}{2}} = \rho_s C_d |\boldsymbol{v}_k|, \qquad (10.146)$$

$$(TC)_{h,k-\frac{1}{2}} = \rho_s C_h |\boldsymbol{v}_k|, \qquad (10.147)$$

$$(TC)_{q,k-\frac{1}{2}} = \rho_s C_q |\boldsymbol{v}_k|, \qquad (10.148)$$

$$\rho_s = \frac{p_s}{RT_{v,0}}.$$
(10.149)

である²².

また、下部境界で摩擦の時定数、 τ_f 、を与える場合には、(10.142)、(10.143) においては

$$(TC)_{m,k-\frac{1}{2}} = -\frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} \frac{1}{\tau_f}, \qquad (10.150)$$

となる²³. 下部境界で温度を規定する場合には, (10.144) において

$$(TC)_{h,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{h,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_s}, \qquad (10.152)$$

とし、下部境界で混合比値を規定する場合には、

$$F_{q,k-\frac{1}{2}} = -(TC)_{q,k-\frac{1}{2}} (q_k - q_s).$$
(10.153)

$$(TC)_{q,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{q,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_s}.$$
 (10.154)

となる²⁴.

また、一定の熱フラックス、物質フラックスを与える場合には、拡散フラックスは

$$F_{h,k-\frac{1}{2}} = F_{h,s}, (10.155)$$

$$F_{q,k-\frac{1}{2}} = F_{q,s}, (10.156)$$

となる.

10.2.1 乱流運動エネルギー, 鉛直拡散係数 1 (Mellor and Yamada level 2) の離散表現

鉛直拡散係数, K_m , K_h , K_q は, それぞれ (10.26), (10.27), (10.28) に示した式で計 算する. そのために, リチャードソン数, 風速の鉛直シアー, 混合距離の離散表現が 必要となる. それらの表式は以下の通りである.

 2^{22} 最後は $T_{v,0}$ (大気の温度) なのかね? T_{s} ($T_{s,v}$?) ではなくて? たぶん,考え方の問題だけ. どちらが悪いとも言えないだろうけど.

$$\left(\frac{\partial u}{\partial t}\right) = -\frac{1}{\tau_f}u \tag{10.151}$$

となる.

 $^{24}z_s$ のsは記号としては良くないかも.

104

(10.35) で定義したリチャードソン数は、地表面以外では下のように離散化する.

$$R_{i,k+\frac{1}{2}} = \frac{g}{\theta_{v,k+\frac{1}{2}}} \frac{\theta_{v,k+1} - \theta_{v,k}}{z_{k+1} - z_k} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{k+\frac{1}{2}}^{-2}, \qquad (10.157)$$

$$\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|_{k+\frac{1}{2}} = \sqrt{\left(\frac{u_{k+1}-u_k}{z_{k+1}-z_k}\right)^2 + \left(\frac{v_{k+1}-v_k}{z_{k+1}-z_k}\right)^2}.$$
 (10.158)

混合距離 (10.29) は以下のように離散化する.

$$l_{k+\frac{1}{2}} = \frac{k(z_{k+\frac{1}{2}} - z_{surf})}{1 + k(z_{k+\frac{1}{2}} - z_{surf})/l_0}.$$
(10.159)

ここで, *z_{surf}* は地表面高度である.

10.2.2 乱流運動エネルギー,鉛直拡散係数 2 (Mellor and Yamada level 2.5) の離散表現

乱流運動エネルギーの支配方程式のうち,移流項を除いた部分は下のように離散化 される²⁵.

$$\frac{\left(\frac{q^2}{2}\right)_k^{t+\Delta t} - \left(\frac{q^2}{2}\right)_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{TKE,k+\frac{1}{2}}^{t+\Delta t} - F_{TKE,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}} + P_{s,k}^{t+\Delta t} + P_{b,k}^{t+\Delta t} - \epsilon_{TKE,k}^{t+\Delta t}.$$
(10.160)

 $^{^{25}}P_s, P_b$ に対しては、どの時刻の値を使うかは選択による. ϵ_{TKE} に対しては、 $t + \Delta t$ の値を使わないと上手く行かないと思われる.

ここで,

$$F_{TKE,k+\frac{1}{2}} = -(TC)_{TKE,k+\frac{1}{2}} \left\{ \left(\frac{q^2}{2}\right)_{k+1} - \left(\frac{q^2}{2}\right)_k \right\}.$$
(10.161)

$$(TC)_{TKE,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}}K_{TKE,k+\frac{1}{2}}\frac{1}{z_{k+1}-z_k},$$
(10.162)

$$P_{s,k} = K_{M,k} \left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z} \right)^2 \right\}_k \tag{10.163}$$

$$= 2^{\frac{1}{2}} l_k S_{M,k} \left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z} \right)^2 \right\}_k \left\{ \left(\frac{q^2}{2} \right)_k \right\}^{\frac{1}{2}}$$
(10.164)

$$P_{b,k} = -K_{H,k} \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right)_k \tag{10.165}$$

$$= -2^{\frac{1}{2}} l_k S_{H,k} \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z} \right)_k \left\{ \left(\frac{q^2}{2} \right)_k \right\}^{\frac{1}{2}}$$
(10.166)

$$\epsilon_{TKE} = \frac{2^{\frac{2}{2}}}{B_1 l_k} \left(\frac{q^2}{2}\right)^{\frac{2}{2}}$$
 (10.167)

$$K_{M,k} = 2^{\frac{1}{2}} l_k \left(\frac{q^2}{2}\right)^{\frac{1}{2}} S_{M,k}$$
(10.168)

$$K_{H,k} = 2^{\frac{1}{2}} l_k \left(\frac{q^2}{2}\right)^{\frac{1}{2}} S_{H,k}$$
(10.169)

$$K_{M,k+\frac{1}{2}} = \frac{1}{2}(K_{M,k} + K_{M,k+1})$$
(10.170)

$$K_{H,k+\frac{1}{2}} = \frac{1}{2}(K_{H,k} + K_{H,k+1})$$
(10.171)

$$K_{q,k+\frac{1}{2}} = K_{H,k+\frac{1}{2}} \tag{10.172}$$

$$K_{TKE,k+\frac{1}{2}} = K_{H,k+\frac{1}{2}} \tag{10.173}$$

$$\left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z} \right)^2 \right\}_k = \left(\frac{u_{k+1} - u_k}{z_{k+1} - z_k} \right)^2 + \left(\frac{v_{k+1} - v_k}{z_{k+1} - z_k} \right)^2, \qquad k = 1$$
(10.174)

$$\left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 \right\}_k = \left(\frac{u_{k+1} - u_{k-1}}{z_{k+1} - z_{k-1}}\right)^2 + \left(\frac{v_{k+1} - v_{k-1}}{z_{k+1} - z_{k-1}}\right)^2, \qquad 2 \le k \le k_m (10.175)$$

$$\left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z}\right)^2 \right\}_k = \left(\frac{u_k - u_{k-1}}{z_k - z_{k-1}}\right)^2 + \left(\frac{v_k - v_{k-1}}{z_k - z_{k-1}}\right)^2, \qquad k = k_{max}$$
(10.176)

$$\left(\frac{g}{\theta_v}\frac{\partial\theta_v}{\partial z}\right)_k = \frac{g}{\theta_{v,k}}\frac{\theta_{v,k+1} - \theta_{v,k}}{z_{k+1} - z_k}, \qquad k = 1$$
(10.177)

$$\left(\frac{g}{\theta_v}\frac{\partial\theta_v}{\partial z}\right)_k = \frac{g}{\theta_{v,k}}\frac{\theta_{v,k+1} - \theta_{v,k-1}}{z_{k+1} - z_{k-1}}, \qquad 2 \le k \le k_{max} - 1$$
(10.178)

$$\left(\frac{g}{\theta_v}\frac{\partial\theta_v}{\partial z}\right)_k = \frac{g}{\theta_{v,k}}\frac{\theta_{v,k}-\theta_{v,k-1}}{z_k-z_{k-1}}, \qquad k = k_{max}$$
(10.179)

となる^{26,27}.

混合距離(10.29)は以下のように離散化する.

$$l_k = \frac{k(z_k - z_{surf})}{1 + k(z_k - z_{surf})/l_0}.$$
(10.180)

ここで, *z_{surf}* は地表面高度である.

(10.161) は、さらに下のように整理される. $2 \le k \le k_{max} - 1$ のとき、

²⁶実際には、閉じるためには、境界の値など他にも変数が必要になる.

²⁷(2013-08-13 高橋) ここで示している離散表現は, 鉛直の格子配置の点で Mellor and Yamada level 2 の離散表現と異なる. level 2, 2.5 の乱流モデルはともに, 鉛直層の境界における拡散係数 を求めるために用いられる. しかし, Mellor and Yamada level 2.5 では, 拡散係数を計算するため に乱流運動エネルギーを計算する必要があり, 移流計算をすることを考えると, 現実的には乱流運 動エネルギーの値は鉛直層の中心に配置せざるを得ない. その結果, 何らかの内挿処理により鉛直 層境界の拡散係数を計算する. 一方, Mellor and Yamada level 2 では, 乱流運動エネルギーの計算 に移流過程が含まれず, 鉛直層の境界における乱流運動エネルギーを無理なく診断することができ る. level 2 の場合も 2.5 の場合も同じように離散化する方が良いと思うが, 統一するためにわざわ ざ難しいことをやるのが良いかどうかを含めて検討が必要.

$$-(TC)_{TKE,k-\frac{1}{2}} \left\{ \left(\frac{q^2}{2} \right)_{k-1}^{t+\Delta t} - \left(\frac{q^2}{2} \right)_{k-1}^{t-\Delta t} \right\} + \left\{ -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k+\frac{1}{2}} + (TC)_{TKE,k-\frac{1}{2}} + \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k}) \right\} \times \left\{ \left(\frac{q^2}{2} \right)_{k}^{t+\Delta t} - \left(\frac{q^2}{2} \right)_{k}^{t-\Delta t} \right\} - (TC)_{TKE,k+\frac{1}{2}} \left\{ \left(\frac{q^2}{2} \right)_{k+1}^{t+\Delta t} - \left(\frac{q^2}{2} \right)_{k+1}^{t-\Delta t} \right\} - \left(F_{TKE,k+\frac{1}{2}}^{t-\Delta t} - F_{TKE,k-\frac{1}{2}}^{t-\Delta t} \right) - \left(F_{TKE,k+\frac{1}{2}}^{t-Dk-\frac{1}{2}} - F_{TKE,k-\frac{1}{2}}^{t-\Delta t} \right) - \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,1,k} + C_{b,1,k} - C_{d,1,k})$$

$$(10.181)$$

ここで,

$$C_{s,1,k} = 2^{\frac{1}{2}} l_k \left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z} \right)^2 \right\}_k S_{M,k}^{t-\Delta t} \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{\frac{1}{2}}$$
(10.182)

$$C_{s,2,k} = \frac{1}{2} \cdot 2^{\frac{1}{2}} l_k \left\{ \left(\frac{\partial \boldsymbol{u}}{\partial z} \right)^2 \right\}_k S_{M,k}^{t-\Delta t} \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{-\frac{1}{2}}$$
(10.183)

$$C_{b,1,k} = -2^{\frac{1}{2}} l_k \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right)_k S_{H,k}^{t-\Delta t} \left\{ \left(\frac{q^2}{2}\right)_k^{t-\Delta t} \right\}^{\frac{1}{2}}$$
(10.184)

$$C_{b,2,k} = -\frac{1}{2} \cdot 2^{\frac{1}{2}} l_k \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z} \right)_k S_{H,k}^{t-\Delta t} \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{-\frac{1}{2}}$$
(10.185)

$$C_{d,1,k} = \frac{2^{\frac{3}{2}}}{B_1 l_k} \left\{ \left(\frac{q^2}{2}\right)_k^{t-\Delta t} \right\}^{\frac{1}{2}}$$
(10.186)

$$C_{d,2,k} = \frac{3}{2} \frac{2^{\frac{3}{2}}}{B_1 l_k} \left\{ \left(\frac{q^2}{2}\right)_k^{t-\Delta t} \right\}^{\frac{1}{2}}$$
(10.187)

である^{28,29,30}.

 \sim

 28 ここでは $C_{s,1}, C_{s,2}, C_{b,1}, C_{b,2}$ を示しているが、少なくとも現状では $C_{s,2,k} = C_{b,2,k} = 0$ としている. これは P_s, P_b として、 $t - \Delta t$ の値を使っていること、つまり、これらの項を陽的に扱うことに対応する.現状このようにする理由は、線形化することで、この定式化の下で必ず正になる P_s が負になることがあるためである.

 $^{29}\epsilon_{TKE}$ を線形化した結果, ϵ_{TKE} が負になることがある. この時は, $C_{d,*,k}=0$ として解きなおす.

 $^{30}P_s, P_b, \epsilon_{TKE}$ は、下のように時間に対して線形化する (テイラー展開して一次の項までとる).

$$P_{s,k}^{t+\Delta t} = 2^{\frac{3}{2}} l_k \hat{S}_{M,k}^{t+\Delta t} \left\{ \left(\frac{\partial u}{\partial z} \right)^2 \right\}_k \left\{ \left(\frac{q^2}{2} \right)_k^{t+\Delta t} \right\}^{\frac{1}{2}}$$
(10.188)

$$\sim 2^{\frac{3}{2}} l_k \hat{S}_{M,k}^{t-\Delta t} \left\{ \left(\frac{\partial u}{\partial z} \right)^2 \right\}_k \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{\frac{3}{2}}$$
$$+ 2^{\frac{3}{2}} l_k \left\{ \left(\frac{\partial u}{\partial z} \right)^2 \right\}_k \left[\left\{ \frac{\partial \hat{S}_M}{\partial \left(\frac{q^2}{2} \right)} \right\}_k^{t-\Delta t} \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{\frac{3}{2}} + \frac{3}{2} \hat{S}_{M,k}^{t-\Delta t} \left\{ \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}^{\frac{1}{2}} \right]$$
$$\times \left\{ \left(\frac{q^2}{2} \right)_k^{t+\Delta t} - \left(\frac{q^2}{2} \right)_k^{t-\Delta t} \right\}$$
(10.189)

$$= C_{s,1} + C_{s,2} \left\{ \left(\frac{q^2}{2}\right)_k^{t+\Delta t} - \left(\frac{q^2}{2}\right)_k^{t-\Delta t} \right\}$$
(10.190)

$$P_{b,k}^{t+\Delta t} = -2^{\frac{3}{2}} l_k \hat{S}_{H,k}^{t+\Delta t} \left(\frac{g}{\theta_v} \frac{\partial \theta_v}{\partial z}\right)_k \left\{ \left(\frac{q^2}{2}\right)_k^{t+\Delta t} \right\}^{\frac{1}{2}}$$
(10.191)

$$-2^{\frac{3}{2}}l_{k}\hat{S}_{H,k}^{t-\Delta t}\left(\frac{g}{\theta_{v}}\frac{\partial\sigma_{v}}{\partial z}\right)_{k}\left\{\left(\frac{q}{2}\right)_{k}\right\}$$
$$-2^{\frac{3}{2}}l_{k}\left(\frac{g}{\theta_{v}}\frac{\partial\theta_{v}}{\partial z}\right)_{k}\left[\left\{\frac{\partial\hat{S}_{H}}{\partial\left(\frac{q^{2}}{2}\right)}\right\}_{k}^{t-\Delta t}\left\{\left(\frac{q^{2}}{2}\right)_{k}^{t-\Delta t}\right\}^{\frac{3}{2}}+\frac{3}{2}\hat{S}_{H,k}^{t-\Delta t}\left\{\left(\frac{q^{2}}{2}\right)_{k}^{t-\Delta t}\right\}^{\frac{1}{2}}\right]$$
$$\times\left\{\left(\frac{q^{2}}{2}\right)^{t+\Delta t}-\left(\frac{q^{2}}{2}\right)^{t-\Delta t}\right\}\right\}$$
(10.192)

$$= C_{b,1} + C_{b,2} \left\{ \left(\frac{q^2}{2}\right)_k^{t+\Delta t} - \left(\frac{q^2}{2}\right)_k^{t-\Delta t} \right\}$$
(10.193)

$$\epsilon_{TKE,k}^{t+\Delta t} = \frac{2^{\frac{3}{2}}}{B_1 l_k} \left\{ \left(\frac{q^2}{2}\right)_k^{t+\Delta t} \right\}^{\frac{3}{2}}$$
(10.194)

$$\sim \frac{2^{\frac{3}{2}}}{B_{1}l_{k}} \left\{ \left(\frac{q^{2}}{2}\right)_{k}^{t-\Delta t} \right\}^{\frac{3}{2}} + \frac{3}{2} \frac{2^{\frac{3}{2}}}{B_{1}l_{k}} \left\{ \left(\frac{q^{2}}{2}\right)_{k}^{t-\Delta t} \right\}^{\frac{1}{2}} \left\{ \left(\frac{q^{2}}{2}\right)_{k}^{t+\Delta t} - \left(\frac{q^{2}}{2}\right)_{k}^{t-\Delta t} \right\}$$

$$(10.195)$$

$$= C_{d,1} + C_{d,2} \left\{ \left(\frac{q^2}{2}\right)_k^{\ell+2\ell} - \left(\frac{q^2}{2}\right)_k^{\ell+2\ell} \right\}$$
(10.196)

2013/10/08(地球流体電脳倶楽部)

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

境界条件より上下境界では乱流運動エネルギーを固定するため、下のようになる^{31,32}. k = 1のとき、

$$\begin{cases} -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k+\frac{1}{2}} + (TC)_{TKE,k-\frac{1}{2}} \\ + \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k}) \end{cases} \\ \times \left\{ \left(\frac{q^2}{2}\right)_{k}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{k}^{t-\Delta t} \right\} \\ - (TC)_{TKE,k+\frac{1}{2}} \left\{ \left(\frac{q^2}{2}\right)_{k+1}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{k+1}^{t-\Delta t} \right\} \\ = - \left(F_{TKE,k+\frac{1}{2}}^{t-\Delta t} - F_{TKE,k-\frac{1}{2}}^{t-\Delta t}\right) \\ - \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,1,k} + C_{b,1,k} - C_{d,1,k})$$
(10.197)

 $k = k_{max}$ のとき、

$$-(TC)_{TKE,k-\frac{1}{2}} \left\{ \left(\frac{q^2}{2} \right)_{k-1}^{t+\Delta t} - \left(\frac{q^2}{2} \right)_{k-1}^{t-\Delta t} \right\} + \left\{ -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k+\frac{1}{2}} + (TC)_{TKE,k-\frac{1}{2}} + \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k}) \right\} \times \left\{ \left(\frac{q^2}{2} \right)_{k}^{t+\Delta t} - \left(\frac{q^2}{2} \right)_{k}^{t-\Delta t} \right\} = - \left(F_{TKE,k+\frac{1}{2}}^{t-\Delta t} - F_{TKE,k-\frac{1}{2}}^{t-\Delta t} \right) - \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,1,k} + C_{b,1,k} - C_{d,1,k})$$
(10.198)

これらをまとめると,

$$\boldsymbol{D}\boldsymbol{x}_{TKE} = \boldsymbol{G}_{TKE} \tag{10.199}$$

³¹実際には、下部境界では固定されない、下部境界における乱流運動エネルギーは摩擦速度に依存するが、当然 $t + \Delta t$ における摩擦速度は $t - \Delta t$ における摩擦速度と異なる.

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

³²特に上部境界は扱いに不整合な点がある.上部境界条件として乱流運動エネルギーの値を決め た上で,上部境界での拡散係数をゼロと仮定すると,境界条件の乱流運動エネルギーの値には意味 がない.別の言い方では,境界条件として,値を与えるのか微分値を与えるのかの問題.両者を与え るとおかしなことになる.現状では,このような意味での整合性は取れていない.

と書くことができる. ここで,

$$\begin{aligned} \boldsymbol{x}_{TKE} &= \left(\left(\frac{q^2}{2}\right)_{1}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{1}^{t-\Delta t}, \left(\frac{q^2}{2}\right)_{2}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{2}^{t-\Delta t}, \cdots, \left(\frac{q^2}{2}\right)_{max}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{max}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{max}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{max}^{t+\Delta t} - \left(\frac{q^2}{2}\right)_{max}^{t+\Delta t} \right) \right) \\ \boldsymbol{G}_{TKE} &= \left(g_{TKE,1}, g_{TKE,2}, \cdots, g_{TKE,k_{max}}\right), \end{aligned}$$
(10.201)
$$g_{TKE,k} &= -\left(F_{TKE,k+\frac{1}{2}}^{t-\Delta t} - F_{TKE,k-\frac{1}{2}}^{t-\Delta t}\right) \\ &- \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} \left(C_{s,1,k} + C_{b,1,k} - C_{d,1,k}\right) \end{aligned}$$
(10.202)

であり, $\boldsymbol{D} = (d_{m,n})$ の各成分は, $2 \le k \le k_{max} - 1$ のとき,

$$d_{k,k-1} = -(TC)_{TKE,k-\frac{1}{2}}, \qquad (10.203)$$

$$d_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k+\frac{1}{2}} + (TC)_{TKE,k-\frac{1}{2}} + \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k}) \qquad (10.204)$$

$$d_{k,k+1} = -(TC)_{TKE,k+\frac{1}{2}}.$$
(10.205)

k=1のとき、

$$d_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k+\frac{1}{2}} + (TC)_{TKE,k-\frac{1}{2}} + \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k})$$
(10.206)

$$d_{k,k+1} = -(TC)_{TKE,k+\frac{1}{2}}, \qquad (10.207)$$

 $k = k_{max}$ のとき

$$d_{k,k-1} = -(TC)_{TKE,k-\frac{1}{2}},$$

$$d_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{TKE,k-\frac{1}{2}} + (TC)_{TKE,k+\frac{1}{2}}$$

$$+ \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} (C_{s,2,k} + C_{b,2,k} - C_{d,2,k})$$
(10.209)

である.

10.2.3 バルク係数 共通部分 (Louis et al., 1982; Beljaars and Holtslag, 1991) の離散表現

バルク係数は、第10.1.3節、第10.1.4節 に示した式で計算する. そのために、地表面のリチャードソン数の離散表現が必要となる. その表式は以下の通りである.

(10.35) で定義したリチャードソン数は、地表面においては、下のように離散化する.

$$R_{i,\frac{1}{2}} = \frac{g}{\theta_{v,s}} \frac{\theta_{v,1} - \theta_{v,s}}{z_{k+1} - z_s} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{\frac{1}{2}}^{-2}, \qquad (10.210)$$

$$\left. \frac{\partial \boldsymbol{v}}{\partial z} \right|_{\frac{1}{2}} = \sqrt{\left(\frac{u_{k_1} - u_s}{z_1 - z_s} \right)^2 + \left(\frac{v_{k_1} - v_s}{z_1 - z_s} \right)^2}, \tag{10.211}$$

$$\theta_{v,s} = \frac{T_{v,s}}{P_s}, \tag{10.212}$$

$$P_s = \left(\frac{p_{00}}{p_s}\right)^{\kappa}.$$
(10.213)

ここで、 z_s は地表面の高度、 T_s は惑星表面温度、 p_s は惑星表面気圧である³³.

10.2.4 バルク係数 2 (Beljaars and Holtslag, 1991; Beljaars, 1994) の離散表現

第 10.1.4 節 に示した Beljaars and Holtslag (1991), Beljaars (1994) の方法では、バ ルク係数は Monin-Obukhov 長さ、L、に依存する. しかし、Lは、摩擦速度、摩擦 温度の関数であり、つまり、Lに依存する. 従って、繰り返し法により Lを求める. このとき、バルクリチャードソン数、 R_i 、を用いることにする.

 $L \geq R_i$ は、バルク係数、 C_d 、 C_h を用いて

$$L = \frac{1}{kR_i} \zeta \frac{C_m^{\frac{3}{2}}}{C_h} \tag{10.214}$$

のような関係にあるため、下のように繰り返し法によって求める.

$$L^{n+1} = \frac{1}{kR_i} \zeta(L^n) \frac{C_m^{\frac{3}{2}}(L^n)}{C_h(L^n)}$$
(10.215)

ここで、上付き添え字 n は、n 回の繰り返しによって得られた値であることを示す. 繰り返し法で計算する際の初期値は $L^1 = 1$ としている.

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

³³ここでは, *R_i* の計算に惑星表面温度を用いているが, 惑星表面上の大気の温度を用いる方法も あるのかもしれない. どちらが良いのかはよく分からない.

また,他に必要となる値は下のように離散化する³⁴.

$$|\mathbf{v}_{1}| = \left\{ u_{1}^{2} + v_{1}^{2} + (\beta w_{*})^{2} \right\}^{\frac{1}{2}}$$
(10.221)
$$\beta w_{*} = \left[\frac{\frac{g}{\theta} (\theta_{s} - \theta_{m}) k^{2} \beta z_{BL}}{\left\{ \log \left(-\frac{38.5L}{\gamma z_{0,m}} \right) + \Psi_{m} \left(\frac{z_{0,m}}{L} \right) \right\} \left\{ \log \left(-\frac{4L}{\gamma z_{0,h}} \right) + \Psi_{m} \left(\frac{z_{0,h}}{L} \right) \right\}} \right]^{\frac{1}{2}}$$
(10.221)

ここで、 $\beta = 1.2, z_{BL} = 1000 \text{ m}$ とする³⁵.

³⁴(10.222) は, Beljaars (1994) の下の式,

$$\overline{w'\theta'} = \frac{k^2\beta w_*(\theta_s - \theta_m)}{\left\{\log\left(-\frac{38.5L}{\gamma z_{0,m}}\right) + \Psi_m\left(\frac{z_{0,m}}{L}\right)\right\}\left\{\log\left(-\frac{4L}{\gamma z_{0,h}}\right) + \Psi_m\left(\frac{z_{0,h}}{L}\right)\right\}}$$
(10.216)

$$\overline{w'\theta'} = b_h \left(\frac{g}{T} z_i\right)^{\frac{1}{2}} (\theta_s - \theta_m)^{\frac{3}{2}}$$
(10.217)

$$b_{h} = \frac{k^{3}\beta^{\frac{3}{2}}}{\left\{\log\left(-\frac{38.5L}{\gamma z_{0,m}}\right) + \Psi_{m}\left(\frac{z_{0,m}}{L}\right)\right\}^{\frac{3}{2}} \left\{\log\left(-\frac{4L}{\gamma z_{0,h}}\right) + \Psi_{m}\left(\frac{z_{0,h}}{L}\right)\right\}^{\frac{3}{2}}}$$
(10.218)

$$z_i = -\frac{L}{k^2 \beta^3} \left\{ \log\left(-\frac{38.5L}{\gamma z_{0,m}}\right) + \Psi_m\left(\frac{z_{0,m}}{L}\right) \right\}^3$$
(10.219)

から下のように導出した.

$$\beta w_* = \left[\frac{\frac{g}{T} (\theta_s - \theta_m) k^2 \beta z_i}{\left\{ \log \left(-\frac{38.5L}{\gamma z_{0,m}} \right) + \Psi_m \left(\frac{z_{0,m}}{L} \right) \right\} \left\{ \log \left(-\frac{4L}{\gamma z_{0,h}} \right) + \Psi_m \left(\frac{z_{0,h}}{L} \right) \right\}} \right]^{\frac{1}{2}}$$
(10.220)

ただし、(10.222) では、*T* を θ に置き換えている. 実質的には、惑星表面付近の値なので差はほとんどないと考えられるが、($\theta_s - \theta_m$) がかかっているため、 θ にしておかないと、参照気圧が惑星表面気圧から大きくずれているときにエクスナー関数分だけずれてしまう.

³⁵Beljaars (1994) の本文では下のように表現している.

$$z_{BL} = -\frac{L}{k^2 \beta^3} \left\{ \log \left(-\frac{38.5L}{\gamma z_{0,m}} \right) + \Psi_m \left(\frac{z_{0,m}}{L} \right) \right\}^3$$
(10.223)

しかし、 z_{BL} の値を固定してもほとんど影響がない (e.g., ECMWF IFS documentation CY38r1) (該当箇所は、Part IV. Physical processes, http://www.ecmwf.int/research/ifsdocs/CY38r1/IFSPart4.pdfのSection 3.2.1, p.36 であ る). また、上の式を用いて計算すると、計算が不安定になるようである.

2013/10/08(地球流体電脳倶楽部)

10.2.5 運動量拡散の差分方程式の整理

東西方向の運動量の鉛直拡散方程式 (10.121) を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) - (TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.224)

k=1のとき、

$$\begin{pmatrix} -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \end{pmatrix} \begin{pmatrix} u_k^{t+\Delta t} - u_k^{t-\Delta t} \end{pmatrix} - (TC)_{m,k+\frac{1}{2}} \begin{pmatrix} u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \end{pmatrix} \\ = - \begin{pmatrix} F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \end{pmatrix}$$
(10.225)

 $k = k_{max}$ のとき、

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.226)

となる.

これらをまとめると,

$$\boldsymbol{A}\boldsymbol{x}_u = \boldsymbol{G}_u \tag{10.227}$$

$$\boldsymbol{x}_{u} = \left(u_{1}^{t+\Delta t} - u_{1}^{t-\Delta t}, u_{2}^{t+\Delta t} - u_{2}^{t-\Delta t}, \cdots, u_{k_{max}}^{t+\Delta t} - u_{k_{max}}^{t-\Delta t} \right), \quad (10.228)$$

$$\boldsymbol{G}_{u} = (g_{u,1}, g_{u,2}, \cdots, g_{u,k_{max}}), \qquad (10.229)$$

$$g_{u,k} = -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.230)

ここで, $2 \le k \le k_{max} - 1$ のとき, $\mathbf{A} = (a_{m,n})$ の各成分は,

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}}, \tag{10.231}$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}, \quad (10.232)$$

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}}.$$
(10.233)

k = 1 obs,

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}, \quad (10.234)$$

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}}.$$
(10.235)

 $k = k_{max}$ のとき、

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}}, \qquad (10.236)$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}}$$
(10.237)

である.

南北風に関しては、東西風と同様に下のように書くことができる.

$$\boldsymbol{A}\boldsymbol{x}_v = \boldsymbol{G}_v \tag{10.238}$$

$$\boldsymbol{x}_{v} = \left(v_{1}^{t+\Delta t} - v_{1}^{t-\Delta t}, v_{2}^{t+\Delta t} - v_{2}^{t-\Delta t}, \cdots, v_{k_{max}}^{t+\Delta t} - v_{k_{max}}^{t-\Delta t} \right), \quad (10.239)$$

$$\boldsymbol{G}_{v} = (g_{v,1}, g_{v,2}, \cdots, g_{v,k_{max}}), \qquad (10.240)$$

$$g_{v,k} = -\left(F_{m,y,k+\frac{1}{2}}^{t-\Delta t} - F_{m,y,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.241)

である.

10.2.6 熱拡散の差分方程式の整理

熱の鉛直拡散の式 (10.123) を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k-1}}(TC)_{h,k-\frac{1}{2}}\left(T_{k-1}^{t+\Delta t}-T_{k-1}^{t-\Delta t}\right) \\ +\left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}+C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) \\ -C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) \\ = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.242)

2013/10/08(地球流体電脳倶楽部)

のとき,k = 1のとき,バルク法でフラックスを評価する場合には,

$$-C_{p}(TC)_{h,k-\frac{1}{2}} \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right) + \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k}} (TC)_{h,k+\frac{1}{2}} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}}\right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t}\right) - C_{p} \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}} \left(T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t}\right) = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$

$$(10.243)$$

下部境界での温度を規定する場合には、

$$\left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}}+C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) \\
-C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) \\
= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.244)

一定値の熱フラックスを与える場合には,

$$\begin{pmatrix}
-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}}\end{pmatrix}\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) \\
-C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) \\
= -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.245)

となる. また, $k = k_{max}$ のとき,

$$-C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}} \left(T_{k-1}^{t+\Delta t} - T_{k-1}^{t-\Delta t} \right) + \left(-C_{p} \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p} \frac{P_{k-\frac{1}{2}}}{P_{k}} (TC)_{h,k-\frac{1}{2}} \right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t} \right) = - \left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.246)

となる.

これらをまとめると、惑星表面におけるフラックスをバルク法で評価する場合には、

$$\boldsymbol{B}_a \boldsymbol{x}_a = \boldsymbol{G}_a \tag{10.247}$$

$$\boldsymbol{x}_{h} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, \cdots, T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t+\Delta t}) 2,48)$$
$$\boldsymbol{G}_{a} = (g_{h,1}, g_{h,2}, \cdots, g_{h,k_{max}}), \qquad (10.249)$$

$$g_{h,k} = -\left(F_{a,k+\frac{1}{2}}^{t-\Delta t} - F_{a,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.250)

と書くことができる.³⁶ ここで, $2 \le k \le k_{max} - 1$ のとき, $B_a = (b_{a,m,n})$ の各成分は,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}, \qquad (10.251)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,\frac{10.25}{2}} (TC)_{h,\frac{10.25}{2}}$$

$$b_{a,k,k+1} = -C_p \frac{F_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(10.253)

であり, k = 1 のとき,

$$b_{a,k,k-1} = -C_p(TC)_{h,k-\frac{1}{2}}, \tag{10.254}$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,\frac{10}{2},\frac{255}{2}})$$

$$b_{a,k,k+1} = -C_p \frac{\Gamma_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(10.256)

であり, $k = k_{max}$ のとき,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}, \qquad (10.257)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}}$$
(10.258)

である.

ここで、*B_a* は *k_{max}* 行 *k_{max}* + 1 列の行列であり、この式だけでは未知数が方程式 数よりも多いために閉じない. 方程式を閉じるために、以下に述べる惑星表面での 熱収支式や地下の熱収支式、もしくは水蒸気の式を用いる. これらの式とあわせて 同時に解く際に用いる行列の形式に関しては、第 14 章を参照せよ.

また, 惑星表面におけるフラックスに一定値を与える場合には, 同じように式を変形して整理すると, k = 1 のとき,

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}}, \qquad (10.259)$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(10.260)

 $^{36}B_a$ の下つき添字のaは「大気」を表すラベルである. 第 12 章 では地表面の熱収支を扱い、 そこでは B_s を用いる. となる. k > 1 の場合には, $(10.251) \sim (10.253)$ と同じである. この場合には, B_a は k_{max} 行 k_{max} 列の行列であり, 未知数が方程式数と等しいため, この式のみで解く ことができる.

10.2.7 水蒸気 (物質) 拡散の差分方程式の整理

ここでは、水蒸気の鉛直拡散の式の離散化方程式を整理する.

第10.2節の最初の部分で述べたように、水蒸気の鉛直拡散は、用いる惑星表面の 水蒸気フラックスの時刻によって2通りの離散化方法を用いる.

惑星表面の水蒸気フラックスとして $t + \Delta t$ の時刻の値を用いる場合, 水蒸気の鉛 直拡散の式 (10.124) を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-(TC)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}} \right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t} \right) - (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) = - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.261)

となり, k = 1 のとき,

$$\begin{aligned} -\epsilon(TC)_{q,k-\frac{1}{2}} & \frac{\partial q_s^*}{\partial T_s} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) \\ & + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + \epsilon(TC)_{q,k-\frac{1}{2}} \right) \left(q_k^{t+\Delta t} - q_k^{t-\frac{\Delta t}{1}} \right) .262) \\ & - (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) \\ & = - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right) \end{aligned}$$
(10.263)

下部境界の混合比を規定する場合には、

$$\begin{pmatrix}
-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}} \end{pmatrix} \left(q_k^{t+\Delta t} - q_k^{t-\Delta t} \right) (10.264) \\
-(TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) \\
= -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right) (10.265)$$

となり, $k = k_{max}$ のとき,

$$-(TC)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t} \right) \\ + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}} \right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t} \right)$$
(10.266)

$$= -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.267)

となる.

これらをまとめると,

$$\boldsymbol{C}\boldsymbol{x}_q = \boldsymbol{G}_q \tag{10.268}$$

と書くことができる. ここで,

$$\boldsymbol{x}_{q} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, \cdots, q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t}) 0.269)$$

$$\mathbf{G}_{q} = (g_{q,1}, g_{q,2}, \cdots, g_{q,k_{max}}), \tag{10.270}$$

$$a_{k} = -\left(F^{t-\Delta t} - F^{t-\Delta t}\right) \tag{10.271}$$

 $g_{q,k} = -\left(F_{q,k+\frac{1}{2}} - F_{q,k-\frac{1}{2}}\right)$ (10.271)

であり、 $2 \le k \le k_{max} - 1$ のとき、 $C = (c_{m,n})$ の各成分は、

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}}, \qquad (10.272)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}}, \qquad (10.273)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}}.$$
(10.274)

k=1のとき、

$$c_{k,k-1} = -\epsilon (TC)_{q,k-\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s}, \qquad (10.275)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + \epsilon(TC)_{q,k-\frac{1}{2}}, \quad (10.276)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}}, \qquad (10.277)$$

 $k = k_{max}$ のとき

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}}, \qquad (10.278)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}}$$
(10.279)

である.

ここで, C は k_{max} 行 k_{max} + 1 列の行列であり, この式だけでは未知数が方程式数 よりも多いために閉じない. 方程式を閉じるために, 熱の鉛直拡散の式や惑星表面

での熱収支式や地下の熱収支式を同時に解く、同時に解く際に用いる行列の形式 に関しては、第14章を参照せよ。

なお,惑星表面フラックスとして $t - \Delta t$ の時刻の値を用いる場合には,同じよう に式を変形して整理すると, k = 1 のとき,

$$c_{k,k-1} = 0, (10.280)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{q} + (TC)_{q,k+\frac{1}{2}}, \qquad (10.281)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}} \tag{10.282}$$

となる. $k \ge 2$ においては、(10.272) ~(10.274) と同様である. この場合には、C は k_{max} 行 k_{max} 列の行列であり、この式だけで閉じる.

なお,惑星表面フラックスとして一定値を用いる場合にも同様の方法で解くことが できる.

10.3 参考文献

- Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteor., 30, 327–341.
- Beljaars, A. C. M., 1994: The parameterization of surface fluxes in large-scale models uder free convection, Q. J. R. Meteorol. Soc., 121, 255–270.
- Businger, J.A., Wyngaard, J. C., Izumi, Y., Bradley, E. F., 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.
- ECMWF IFS documentation CY38r1, http://www.ecmwf.int/research/ifsdocs/CY38r1/.
- Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988: A quasi-equilibrium turbulent energy model for geophysical flows, *J. Atmos. Sci.*, **45**, 55–62.
- Kondo, J and Sato, T., 1982: The determination of the von Karman Constant. J. Meteorol. Soc. Japan, 60, 461–471.
- Louis, J-F., M. Tiedtke, and J-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF, Workshop on Planetary Boundary Layer Parameterization, 59-80, ECMWF, Reading, U.K..

- Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., **31**, 1791–1806.
- Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems, *Rev. Geophys. Space Phys.*, **20**, 851–875.
- Sheppard, P.A., 1947: The Aerodynamic Drag of the Earth's Surface and the Value of von Karman's Constant in the Lower Atmosphere. Proc. Roy. Soc. (London), A188, 208-222.
- 木田 重雄, 柳瀬 真一郎, 1990: 乱流力学, 朝倉書店.
- 近藤 純正, 1982: 大気境界層の科学 -大気と地球表面の対話-(気象学のプロムナー ド 4), 東京堂出版.

第11章 乾燥対流調節

乾燥対流調節は、第8.2節で述べた湿潤対流調節において比湿をゼロとした場合に 対応する.詳細は第8.2節を参照すること.

第12章 惑星表面・地下の熱収支

12.1 数理表現

ここでは、惑星表面・地下の熱収支について述べる.

12.1.1 惑星表面 1 層モデル

惑星表面に 1 層の板があるモデルを考える. このモデルは slab ocean モデルと等 価である.

この1層の板の熱容量が有限の時,熱収支は下のように表現できる.

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_g.$$
(12.1)

ここで *C*_s は熱容量である.

一方, 熱容量が無限大のときは下のように表現できる.

$$\frac{\partial T_s}{\partial t} = 0. \tag{12.2}$$

このときは,惑星表面温度を固定することと等価であり,下のように書くことができる.

$$T_s = \text{Const.}$$
 (12.3)

12.1.2 土壌熱拡散モデル

地表面のモデルとして、土壌中の熱伝導を考慮したモデルを考える.土壌温度の熱 伝導方程式と、その境界条件としての地表面の熱収支は

$$C_g \frac{\partial T_g}{\partial t} = -\frac{\partial F_{g,h}}{\partial z} \tag{12.4}$$

$$F_{g,h} = F_{SR} + F_{LR} + F_h + LF_q \text{ for } z = 0$$
 (12.5)

$$F_{g,h} = -\kappa \frac{\partial T_g}{\partial z} \quad \text{for } z < 0$$
 (12.6)

となる. ここで C_g は単位体積当たりの土壌熱容量 $(J m^{-3} K^{-1})$ であり, κ は土壌 の熱伝導係数 $(W m^{-1} K^{-1})$ である¹.

融雪・氷の融解に伴う熱収支の修正

融雪や氷の融解/凝結の時には,惑星表面温度は凝結温度となる.この時,惑星表面 温度と惑星表面の熱収支は,

$$T_s = T_{cond} \tag{12.7}$$

$$F_{g,h} = SR + F_{LR} + F_{h,\frac{1}{2}} + LF_{q,\frac{1}{2}}(+F_{IM}) + F_{SM}$$
(12.8)

となる. ここで, T_{cond} は凝結温度であり, F_{IM} は氷の融解・凝結による熱フラックス, F_{SM} は融雪による熱フラックスである.

12.1.3 海氷 1 層熱収支モデル

海氷が存在する場合のモデルとして、1層の海氷のモデルを考える.海氷面上の熱 収支は、

$$C_{I}h_{I}\frac{\partial T_{s}}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{b}.$$
 (12.9)

となる. ここで, C_I は海氷の単位体積当たりの熱容量, h_I は海氷の厚さ, F_b は海 氷の底面から海に伝わる熱伝導フラックスである.

¹単位体積当たりの熱容量は、密度 $(kg m^{-3})$ と単位質量あたりの比熱 $(J K^{-1} kg^{-1})$ の積である. 熱伝導係数は、密度 $(kg m^{-3})$ 、単位質量あたりの比熱 $(J K^{-1} kg^{-1})$ 、拡散係数 $(m^2 s^{-1})$ の積である.

surface/energybudget.tex(surface/energybudget-math.tex) 2013/10/08(地球流体電脳倶楽部)

124 dcpam5 支配方程式系とその離散(第 12章 惑星表面・地下の熱収支

海氷の融解に伴う熱収支の修正

海氷の温度が凝結温度を上回る時には、海氷が融解する.この時、海表面温度(惑 星表面温度)は凝結温度を超えることはない.

この時の惑星表面の熱収支は、

$$C_{I}h_{I}\frac{\partial T_{s}}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g} - F_{IM}.$$
(12.10)

となる.ここで, F_{IM} は海氷の融解による熱フラックスである.

12.2 離散表現

ここでは,惑星表面・地下の熱収支の離散化について述べる.

12.2.1 惑星表面 1 層モデル

惑星表面に 1 層の板があるモデルにおいて, 熱容量が有限の場合の熱収支の式 (12.1) を, 第 10 章 に示した惑星表面におけるフラックスを用いて整理すると,

$$-L\epsilon(TC)_{q,\frac{1}{2}} \left(q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t} \right) + \left(\frac{C_{s}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_{s}^{*}}{\partial T} \right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t} \right) + \left(-C_{p} \frac{P_{\frac{1}{2}}}{P_{1}} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}} \right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g}^{t+\Delta t}$$
(12.11)

となる. なお, この変形においては, 惑星表面におけるフラックスとして $t + \Delta t$ の 時刻の値を用いている. もし, 惑星表面における水蒸気フラックスとして $t - \Delta t$ の 値を用いる場合には, 左辺第一項がなくなり, また $L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T}$ を削除すれば良 い. これらを, 今後の式の整理の都合から, k = 0 として下の様に書き直す.

$$b_{s,k,k-1} \left(q_1^{t+\Delta t} - q_1^{t-\Delta t} \right) + b_{s,k,k} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{s,k,k+1} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{s,k}$$
(12.12)

ここで,

$$b_{s,k,k-1} = -L\epsilon(TC)_{q,\frac{1}{2}}$$
(12.13)

$$b_{s,k,k} = \frac{C_s}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + L\epsilon (TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s} + \frac{\partial F_{LR}}{\partial T_s}$$
(12.14)

$$b_{s,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(12.15)

$$g_{s,k} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_g^{t+\Delta t} (12.16)$$

である.

一方,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には、同様にして

$$b_{s,k,k-1} = 0 (12.17)$$

$$b_{s,k,k} = 1 (12.18)$$

$$b_{s,k,k+1} = 0 (12.19)$$

$$g_{s,k} = 0.$$
 (12.20)

となる.

12.2.2 地表面における熱収支と地下における熱伝導方程式

土壌の熱伝導方程式は下のように離散化される.

$$C_g \frac{T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t}}{2\Delta t} = -\frac{F_{g,h,k+\frac{1}{2}}^{t+\Delta t} - F_{g,h,k-\frac{1}{2}}^{t+\Delta t}}{z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}}}$$
(12.21)

ここで, $1 \le k \le k_{s,max} - 1$ のとき,

$$F_{g,h,k+\frac{1}{2}} = -(TC)_{g,k+\frac{1}{2}} (T_{g,k+1} - T_{g,k}), \qquad (12.22)$$

$$(TC)_{g,k+\frac{1}{2}} = \kappa_{g,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$
(12.23)

であり、上部境界条件は (k = 1 obs),

$$F_{g,h,k-\frac{1}{2}} = F_{SR} + F_{LR} + F_{h,\frac{1}{2}} + LF_{q,\frac{1}{2}}$$
(12.24)

であり、下部境界条件は $(k = k_{s,max} \text{ obs}),$

$$F_{g,h,k+\frac{1}{2}} = 0 (12.25)$$

である.

しかし、このままでは方程式の数よりも未知数 (大気温度 T (k_{max} 個), 地表面温度 T_s (1 個), 土壌温度 T_g ($k_{s,max}$ 個)) の数の方が多いために解けない. そこで以下の 式を導入する.

$$F_{g,h,\frac{1}{2}} = -(TC)_{g,\frac{1}{2}} (T_{g,1} - T_s)$$
(12.26)

$$(TC)_{g,\frac{1}{2}} = \kappa_{g,\frac{1}{2}} \frac{1}{z_1 - 0}$$
(12.27)

今後, (12.26) を上部境界条件と考え, 同時に, (12.24) をk = 0 における式と考えることで, 大気と土壌の熱収支を仲介させる².

土壌の熱拡散方程式を変形して整理すると、 $2 \le k \le k_{s,max} - 1$ のとき、

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t} \right) + \left\{ \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}} \right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t} \right) -(TC)_{g,k+\frac{1}{2}} \left(T_{g,k+1}^{t+\Delta t} - T_{g,k+1}^{t-\Delta t} \right) = - \left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(12.28)

となり, $k = k_{s,max}$ のとき,

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t} \right) + \left\{ \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} \right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t} \right) = - \left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(12.29)

となる.

k = 1における式は, (12.21) を (12.26) の式を用いて変形することで得られる. 得られる式は, k = 2の式において,

$$T_{g,k-1} = T_s$$
 (12.30)

とした式と同じである.

k = 0のとき、この式は、式の形としては、地表面に熱容量ゼロの仮想的な層が存在すると仮定することと等価である。そこで、ここではこの考えを拡張し、一様な

²ここでは, $-k_{max} \le k \le -1$ が大気中の層のインデクスであり, k = 0 が, 言わば, 地表面のインデクスであり, $1 \le k \le k_{s,max}$ が土壌中のインデクスとなる.

温度 T_s を持ち、単位面積当たりの熱容量が C_s である層が地表面直下にあると考えることにする. この層の熱収支の式は (12.24) を拡張し、以下のように書くことができる³.

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(12.31)

この式を時間に関して離散化すると,

$$C_s \frac{T_s^{t+\Delta t} - T_s^{t-\Delta t}}{2\Delta t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(12.32)

となる.

この式を整理すると,

$$-L\epsilon(TC)_{q,\frac{1}{2}}(q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t})$$

$$+ \left(-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}} \right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t} \right)$$

$$+ \left(\frac{C_{s}}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + L\epsilon(TC)_{q,\frac{1}{2}}\frac{\partial q_{s}^{*}}{\partial T} \right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t} \right)$$

$$+ (TC)_{g,\frac{1}{2}} \left(T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t} \right)$$

$$= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$

$$(12.33)$$

となる.4

 $^{3}C_{s}=0$ の場合に, (12.24) と等しくなることは容易に確認できる.このように定式化しておくと, slub ocean の条件に適応できる.例えば, $C_{s}\neq0,$ $F_{g,h,k-\frac{1}{2}}=0,$ $(TC)_{g,\frac{1}{2}}=0$ の場合には, slub ocean に対応する.しかし, これは単に計算上 / モデル開発上の工夫であるが, 実際にどの程度役に立つかは未知数.

$$F_{q,k-\frac{1}{2}} = -\epsilon(TC)_{q,k-\frac{1}{2}}(q_k - q_s^*)$$
(12.35)

$$F_{q,k-\frac{1}{2}}^{n+1} = -\epsilon(TC)_{q,k-\frac{1}{2}}(q_k^{n+1} - (q_s^*)^{n+1})$$
(12.36)

$$= -\epsilon (TC)_{q,k-\frac{1}{2}} \left[q_k^{n+1} - \left\{ (q_s^*)^{n-1} + \left(\frac{\partial q^*}{\partial T} \right) (T_s^{n+1} - T_s^{n-1}) \right\} \right]$$
(12.37)

$$= -\epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (q_s^*)^{n-1} \right\} + \epsilon (TC)_{q,k-\frac{1}{2}} \left(\frac{\partial q^*}{\partial T} \right) (T_s^{n+1} - T_s^{n-1})$$
(12.38)

$$= -\epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - q_k^{n-1} + q_k^{n-1} - (q_s^*)^{n-1} \right\} + \epsilon (TC)_{q,k-\frac{1}{2}} \left(\frac{\partial q^*}{\partial T} \right) (T_s^{n+1} - T_s^{n-1})$$
(12.39)

$$= -\epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - q_k^{n-1} \right\} - \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n-1} - (q_s^*)^{n-1} \right\} + \epsilon (TC)_{q,k-\frac{1}{2}} \left(\frac{\partial q^*}{\partial T} \right) (T_s^{n+1} - (T_s^n \cdot 4\mathbf{b})) = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} + \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} + \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\} = \epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - (T_s^n \cdot 4\mathbf{b}) \right\}$$

$$= -\epsilon (TC)_{q,k-\frac{1}{2}} \left\{ q_k^{n+1} - q_k^{n-1} \right\} + F_{q,k-\frac{1}{2}}^{n+1} + \epsilon (TC)_{q,k-\frac{1}{2}} \left(\frac{\partial q^*}{\partial T} \right) (T_s^{n+1} - T_s^{n-1})$$
(12.41)

また、土壌熱伝導フラックスに $t - \Delta t$ の時刻の値を用いる場合には、

$$-L\epsilon(TC)_{q,\frac{1}{2}}(q_{1}^{t+\Delta t}-q_{1}^{t-\Delta t})$$

$$+ \left(-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}}\right) \left(T_{1}^{t+\Delta t}-T_{1}^{t-\Delta t}\right)$$

$$+ \left(\frac{C_{s}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + L\epsilon(TC)_{q,\frac{1}{2}}\frac{\partial q_{s}^{*}}{\partial T}\right) \left(T_{s}^{t+\Delta t}-T_{s}^{t-\Delta t}\right)$$

$$= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$
(12.42)
$$(12.43)$$

となる.

また、 潜熱フラックスに $t - \Delta t$ の時刻の値を用いる場合には、

$$\begin{pmatrix}
-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}} \end{pmatrix} (T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}) \\
+ \left(\frac{C_{s}}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} \right) (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}) \\
+ (TC)_{g,\frac{1}{2}} (T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}) \\
= -F_{SR}^{t+\Delta t} - F_{LR} (T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t}) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{g,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$
(12.44)

となる.

これらをまとめると,

$$\boldsymbol{B}_{g}\boldsymbol{x}_{g} = \boldsymbol{G}_{g} \tag{12.45}$$

と書くことができる. ここで,

$$\boldsymbol{x}_{g} = \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, ..., T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}\right), \quad (12.46)$$

$$G_{g} = (g_{g,0}, g_{g,1}, g_{g,2}, ..., g_{g,k_{s,max}}),
 (12.47)
 g_{g,0} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h}^{t-\Delta t}$$

$$_{0} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t}$$

$$I D^{t-\Delta t} + D^{t-\Delta t}$$

$$(12.40)$$

$$-LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$
(12.48)

$$g_{g,k\geq 1} = -\left(F_{g,k+\frac{1}{2}}^{t-\Delta t} - F_{g,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(12.49)

ここで、 $1 \le k \le k_{s,max} - 1$ のとき、

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}} \tag{12.50}$$

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}} \quad (12.51)$$

$$b_{g,k,k+1} = -(TC)_{g,k+\frac{1}{2}} \tag{12.52}$$

であり, k = 0 のとき,

$$b_{g,k,k-1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(12.53)

$$b_{g,k,k} = \frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s}$$
(12.54)

$$b_{g,k,k+1} = (TC)_{g,\frac{1}{2}} \tag{12.55}$$

であり 5 , $k = k_{s,max}$ のとき,

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}}$$
(12.56)

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}}$$
(12.57)

である.

ただし、 B_g は $k_{s,max}$ + 1 行 $k_{s,max}$ + 2 列の行列であり、この式だけでは未知数が 方程式数よりも多いために閉じない、方程式を閉じるために、熱の鉛直拡散の式と 同時に解く.

なお,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には,

$$b_{g,k,k-1} = 0 (12.58)$$

$$b_{g,k,k} = 1 (12.59)$$

$$b_{g,k,k+1} = 0 (12.60)$$

$$g_{g,k} = 0$$
 (12.61)

である.

12.2.3 氷の融解・融雪による熱収支の修正

氷の融解および融雪時の地表面の熱収支式,(12.8)を離散化すると,

$$F_{g}^{t+\Delta t} = -\kappa \frac{T_{s}^{t+\Delta t} - T_{g,1}^{t+\Delta t}}{z_{\frac{1}{2}} - z_{1}}$$

= $F_{SR}^{t+\Delta t} + F_{LR}^{t+\Delta t} + F_{h,\frac{1}{2}}^{t+\Delta t} + LF_{q,\frac{1}{2}}^{t+\Delta t}(+F_{IM}^{t+\Delta t}) + F_{SM}^{t+\Delta t}$ (12.62)

⁵ここでは, T_g (土壌温度), T_s (地表面温度), T (大気温度)の順番に書いているが, 2010/02/20 時点のコードでは逆の順番になっている.

となる. さらに, (12.32) と同様の方法に基づき, (12.62) を, 地表面に熱容量が C_s である層があると考えて離散化し直すと,

 $C_{s} \frac{T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}}{2\Delta t} = -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} (-F_{IM}^{t+\Delta t}) - (\mathbb{P}_{SM}^{t+\Delta t}) = -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} (-F_{IM}^{t+\Delta t}) - (\mathbb{P}_{SM}^{t+\Delta t}) = -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} (-F_{IM}^{t+\Delta t}) - (\mathbb{P}_{SM}^{t+\Delta t}) = -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} - F_{IM}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} - F_{IM}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t+\Delta t} - F_{IM}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t}$

となる. ここで、 $F_{g,\frac{3}{2}}^{t+\Delta t}$, $F_{SR}^{t+\Delta t}$, $F_{LR}^{t+\Delta t}$, $F_{h,\frac{1}{2}}^{t+\Delta t}$, $LF_{q,\frac{1}{2}}^{t+\Delta t}$, $F_{IM}^{t+\Delta t}$, $F_{SM}^{t+\Delta t}$ はそれぞれ、地下への熱伝導フラックス、短波放射フラックス、長波放射フラックス、顕熱フラックス、 、潜熱フラックス、氷の融解による熱フラックス、融雪による熱フラックスである. κ は土壌の熱拡散係数である.

ここでは、まず $T_s^{t+\Delta t} = T_c$ となると仮定して、氷の融解・融雪による熱フラックス を未知数として求め、… やめた. 後で書く (yot, 2011/12/28).

積雪がすべて解ける場合

このとき、積雪量 M_{snow} を用いると、 $F_{SM}^{t+\Delta t} = \frac{L_{fusion}M_{\text{snow}}}{2\Delta t}$ であるから、この潜熱を与えて連立一次方程式を解き直せばよい. ここで、 L_{fusion} は融解潜熱である.

(12.63)を整理すると、

$$\begin{split} (TC)_{g,\frac{1}{2}} \left(T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t} \right) \\ &+ \left(\frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} \right) \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) \\ &+ \left(-C_p \frac{P_1}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1} \right) \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) \\ &= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{g,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t} (-F_{IM}^{t+\Delta t}) - (F_{SM}^{t+\Delta t}) - F_{SM}^{t+\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}) - F_{SM}^{t+\Delta t} + F_{SM}^{t+$$

となる. ただし、ここでは三重対角行列にするために、 潜熱フラックスは $t - \Delta t$ の 時刻のものを用いる.

これらを (12.45) の形式にまとめると, (12.48) において

$$g_{g,0} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t} \left(-F_{IM}^{t+\Delta t} \right) - F_{SM}^{t+\Delta t}$$
(12.65)

とすれば良い.

積雪がすべて解けない場合

このとき, $T_s^{t+\Delta t} = T_{cond}$ として連立一次方程式を解き直せばよい.

(12.45)の形式にまとめると、(12.48)、(12.54) において

$$b_{g,k,k-1} = 0 (12.66)$$

$$b_{g,k,k} = 1$$
 (12.67)

$$b_{g,k,k+1} = 0 (12.68)$$

$$g_{g,0} = T_c - T_s^{t-\Delta t} (12.69)$$

とすれば良い.

 F_{SM} は, $T_s^{t+\Delta t} = T_{cond}$ として, 惑星表面の熱収支式, (12.63), から求める.

12.2.4 海氷面上の熱収支

海氷面上の,海氷に伝わる熱フラックスを

$$F_b = -\kappa_I \frac{T_s - T_0}{h_I} \tag{12.70}$$

と書くことにする. ここで, κ_I は海氷の熱伝導率, h_I は海氷の厚さであり, T_0 は海 氷下の海水温である. このとき, 海氷面上の熱収支式 (12.9) は下のように離散化さ れる.

$$\frac{C_I h_I}{2\Delta t} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right)
= -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t+\Delta t} + F_b^{t+\Delta t}$$
(12.71)

これを整理すると,

$$-L\epsilon(TC)_{q,\frac{1}{2}}(q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t})$$

$$+ \left(\frac{C_{I}h_{I}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + \frac{\kappa_{I}}{h_{I}} + L\epsilon(TC)_{q,\frac{1}{2}}\frac{\partial q_{s}^{*}}{\partial T}\right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right)$$

$$+ \left(-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}}\right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}\right)$$

$$= -F_{SR}^{t+\Delta t} - F_{LR}\left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{b}^{t-\Delta t}$$

$$(12.72)$$

となる.

また、 潜熱フラックスに $t - \Delta t$ の時刻の値を用いる場合には、

$$\frac{C_{I}h_{I}}{2\Delta t} \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right)
= -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{b}^{t+\Delta t}$$
(12.74)

⁶. これを整理すると,

$$\left(\frac{C_{I}h_{I}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + \frac{\kappa_{I}}{h_{I}}\right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right) \\
+ \left(-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}}\right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}\right) \\
= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{b}^{t-\Delta t} \quad (12.75)$$

となる.

以上を整理し、今後の式の整理を念頭において、k = 0として下の形に書くことに する.

$$b_{i,k,k} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{i,k,k+1} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{i,k}$$
(12.76)

ここで,

$$b_{i,k,k} = \frac{C_I h_I}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} + \frac{\kappa_I}{h_I}$$
(12.77)

$$b_{i,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(12.78)

$$g_{i,k} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_b^{t-\Delta t}$$
(12.79)

である.

12.2.5 海氷の融解による熱収支の修正

海氷の融解時の熱収支式 (12.10) を離散化すると,

$$\frac{C_I h_I}{2\Delta t} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_b^{t+\Delta t} - (H_{IM}^{t+\Delta t}) \right)$$

$$T_s^{t+\Delta t} = T_c$$
(12.81)

⁶これは、整理した結果得られる行列を三重対角行列にするためである.これは、水蒸気の式に おいて惑星表面の水蒸気フラックスの値として $t - \Delta t$ の時刻の値を使うことにしたことに起因し ており、その場合には、ここでも $t - \Delta t$ の時刻のフラックスを使わなければ水の質量が保存されな い. もちろん、他のやり方はあり得るだろう.

となる. ここで, T_c は凝結温度である. T_c は既知であるから, $T_s = T_c$ として連立 方程式を解き直す. F_{IM} は, $T_s = T_c$ として, (12.80) から求める.

なお,連立方程式を解く際には,(12.77),(12.78),(12.79)を下のように置き直して 用いる.

$$b_{i,k,k} = 1$$
 (12.82)

$$b_{i,k,k+1} = 0 (12.83)$$

$$g_{i,k} = T_c - T_s^{t+\Delta t} \tag{12.84}$$

第13章 バケツモデル

13.1 数理表現

Manabe (1969) に従い、地面水分量、M_w、積雪量、M_s、は下の方程式に従うとする.

$$\frac{\partial M_w}{\partial t} = -F_{q,w} + F_{rain} + F_{SM} - F_{RO}$$
(13.1)

$$\frac{\partial M_s}{\partial t} = -F_{q,s} + F_{snow} - F_{SM} \tag{13.2}$$

ここで, $F_{q,w}$, $F_{q,s}$, F_{rain} , F_{snow} , F_{SM} , F_{RO} はそれぞれ地表面の水が蒸発すること による水蒸気フラックス, 雪が蒸発することによる水蒸気フラックス, 降水フラッ クス, 降雪フラックス, 融雪フラックス, そして流出フラックスである. ただし, $0 \le M_w \le M_{w,max}$ であり, $M_{w,max}$ は地面が保持できる水の最大量である.

全水蒸気フラックス F_q における, $F_{q,w}$ と $F_{q,s}$ の内訳, および全降水・降雪フラックス F_{PRCP} における, F_{rain} と F_{snow} の内訳は

13.2 離散表現

地表面水分量,積雪量の支配方程式は下のように離散化される.

$$\frac{M_w^{n+1} - M_w^{n-1}}{2\Delta t} = -F_{q,w,\frac{1}{2}} + F_{rain} + F_{SM} - F_{RO}$$
(13.3)

$$\frac{M_s^{n+1} - M_s^{n-1}}{2\Delta t} = -F_{q,s,\frac{1}{2}} + F_{snow} - F_{SM}$$
(13.4)

ここで,

$$F_{q,\frac{1}{2}} = F_{q,w,\frac{1}{2}} + F_{q,s,\frac{1}{2}}$$
(13.5)

である.

13.3 参考文献

Manabe, S., 1969: Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Wea. Rev., 97, 739–774.

第14章 熱収支を統合した連立方程式 の構成

14.1 離散表現

12.2 節において、大気中の熱拡散における収支、大気中の水蒸気の拡散の収支、惑 星表面の1層モデルの熱収支、惑星表面および土壌中の熱拡散の収支、海氷面上の 熱収支について書いた.既に書いたように、これらはそれぞれ単独では必ずしも閉 じておらず、適宜組み合わせて連立方程式を構成する必要がある.ここでは、以下 の3通りの組み合わせ方を示す.

- 惑星表面に1層モデルを用いる場合
- 土壌熱拡散モデルを用いる場合
- 海氷熱収支モデルを用いる場合

14.1.1 惑星表面に 1 層モデルを用いる場合

ここでは,惑星表面に1層モデルを用いる場合を考える.このとき,大気中の熱拡散の収支式 (10.247),惑星表面の1層モデルの熱収支式 (12.12),水蒸気拡散による収支式 (10.268)を同時に解く.これらの式をまとめると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hq} = \boldsymbol{G}_{hq} \tag{14.1}$$

$$\boldsymbol{x}_{hq} = \begin{pmatrix} q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t}, ..., q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix}, \quad (14.2)$$

$$= (\Delta q_{k_{max}}, \dots, \Delta q_2, \Delta q_1, \Delta T_s, \Delta T_s)$$
(14.2)

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \tag{14.3}$$

$$\boldsymbol{G}_{hq} = (g_{q,k_{max}}, ..., g_{q,2}, g_{q,1}, g_{s,0}, g_{h,1}, g_{h,2}, ..., g_{h,k_{max}}), \qquad (14.4)$$

Dの各成分は, $k \leq -1$ のとき,

$$d_{-k,k+1} = c_{k,k-1} \tag{14.5}$$

$$d_{-k,k} = c_{k,k} (14.6)$$

$$d_{-k,k-1} = c_{k,k+1} (14.7)$$

であり, k = 0 のとき,

$$d_{k,k-1} = b_{s,k,k-1} \tag{14.8}$$

$$d_{k,k} = b_{s,k,k} \tag{14.9}$$

$$d_{k,k+1} = b_{s,k,k+1} (14.10)$$

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} (14.11)$$

$$d_{k,k} = b_{a,k,k} \tag{14.12}$$

$$d_{k,k+1} = b_{a,k,k+1} \tag{14.13}$$

である. なお, $b_{a,k,k}$ などと $c_{k,k}$ などの定義は第 10 章 において, $b_{s,k,k}$ などの定義 は第12章 においてなされている.

この連立一次方程式式を解いて求めた x_{hq} を用いて,鉛直乱流混合による時間変 化率を下のように計算する.

$$\left(\frac{\partial T}{\partial t}\right)_k = \frac{\Delta T_k}{2\Delta t},\tag{14.14}$$

$$\left(\frac{\partial T_s}{\partial t}\right) = \frac{\Delta T_s}{2\Delta t},\tag{14.15}$$

$$\left(\frac{\partial q}{\partial t}\right)_k = \frac{\Delta q_k}{2\Delta t}.$$
(14.16)
14.1.2 土壌熱拡散モデルを用いる場合

ここでは、土壌熱拡散モデルを用いる場合を考える.このとき、大気中の熱拡散の 収支式 (10.247)、土壌熱拡散の熱収支式 ((12.45)) を同時に解く.これらの式をま とめると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hg} = \boldsymbol{G}_{hg} \tag{14.17}$$

$$\boldsymbol{x}_{hg} = \begin{pmatrix} T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}, ..., T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix},$$
(14.18)
$$= (\Delta T_{s}) \Delta T_{s} \Delta T_{s} \Delta T_{s}$$

$$(\Delta I_{g,k_{s,max}}, \dots, \Delta I_{g,2}, \Delta I_{g,1}, \Delta T_s,$$

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \qquad (14.19)$$

$$\boldsymbol{G}_{hg} = \left(g_{g,k_{s,max}}, \dots, g_{g,2}, g_{g,1}, g_{s,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}} \right),$$
(14.20)

Dの各成分は, $k \leq 0$ のとき,

$$d_{-k,k+1} = b_{g,k,k-1} (14.21)$$

$$d_{-k,k} = b_{g,k,k} (14.22)$$

$$d_{-k,k-1} = b_{g,k,k+1} (14.23)$$

 $\mathfrak{cou}, k \geq 1 \mathfrak{o} \mathfrak{cs},$

$$d_{k,k-1} = b_{a,k,k-1} \tag{14.24}$$

$$d_{k,k} = b_{a,k,k} \tag{14.25}$$

$$d_{k,k+1} = b_{a,k,k+1} \tag{14.26}$$

である.

この連立一次方程式式を解いて求めた x_{hq} を用いて, 鉛直乱流混合による時間変 化率を下のように計算する.

$$\left(\frac{\partial T}{\partial t}\right)_{k} = \frac{\Delta T_{k}}{2\Delta t}, \qquad (14.27)$$

$$\left(\frac{\partial T_s}{\partial t}\right) = \frac{\Delta T_s}{2\Delta t},\tag{14.28}$$

$$\left(\frac{\partial T_g}{\partial t}\right)_k = \frac{\Delta T_{g,k}}{2\Delta t}.$$
(14.29)

14.1.3 海氷熱収支モデルを用いる場合

ここでは、海氷熱収支モデルを用いる場合を考える.このとき、大気中の熱拡散の 収支式 (10.247)、海氷面上の熱収支式 (12.76)、を同時に解く¹. これらの式をまと めると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hi} = \boldsymbol{G}_{hi} \tag{14.30}$$

$$\boldsymbol{x}_{hi} = \left(T_s^{t+\Delta t} - T_s^{t-\Delta t}, T_1^{t+\Delta t} - T_1^{t-\Delta t}, T_2^{t+\Delta t} - T_2^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t}\right), \quad (14.31)$$

$$\boldsymbol{G}_{hi} = (g_{i,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}}), \qquad (14.32)$$

Dの各成分は, k = 0のとき,

$$d_{k,k-1} = b_{i,k,k-1} \tag{14.33}$$

$$d_{k,k} = b_{i,k,k}$$
 (14.34)

であり, $k \ge 1$ のとき,

$$d_{k,k-1} = b_{a,k,k-1} \tag{14.35}$$

$$d_{k,k} = b_{a,k,k} \tag{14.36}$$

$$d_{k,k+1} = b_{a,k,k+1} \tag{14.37}$$

である.

¹現在考えている海氷熱収支モデルは 1 層であり,水蒸気の熱収支式を含めて定式化しても,行 列は三重対角行列にすることはできる.しかし,現状ではそのような定式化は用意していない.

第15章 雲モデル

15.1 はじめに

ここでは雲モデルについて述べる.現在の depam では,非常に簡単な雲モデルを 用いている.

15.2 数理表現

現在の dcpam では, 雲氷を無視しており, 雲水混合比 q_{cw} は下の支配方程式に従うとする.

$$\frac{\partial q_{cw}}{\partial t} = \left(\frac{\partial q_{cw}}{\partial t}\right)_{VD} + \left(\frac{\partial q_{cw}}{\partial t}\right)_{CLD}$$
(15.1)

$$\left(\frac{\partial q_{cw}}{\partial t}\right)_{CLD} = P_{cw} - \frac{q_{cw}}{\tau_{cw}}$$
(15.2)

ここで、 $\left(\frac{\partial q_{cw}}{\partial t}\right)_{VD}$ は鉛直拡散、 P_{cw} は雲水の生成率である.また、 τ_{cw} は雲水消滅の時定数であり、定数である.現状の dcpam では、雲水の移流は無視している. P_{cw} は、積雲対流パラメタリゼーション、非対流性凝結 (大規模凝結) から求められる値を用いる.

降水率, P, は, 下のように求められる.

$$P = \int_0^{p_s} \frac{q_{cw}}{\tau_{cw}} \frac{dp}{g} \tag{15.3}$$

ただし,降水は,最下層温度に応じて雪をとなると仮定している.しかし,雨から雪になる際の潜熱は無視している¹.

¹dcpam では、バケツモデルを用いている際に、惑星表面の積雪の融解、昇華に伴う潜熱を考慮している.したがって、系内でエネルギーは保存していない.

なお,この雲モデルでは,雲量は1と仮定している.

15.3 離散表現

dcpam の雲モデルでは、乱流拡散は力学過程と一緒に先に積分され、その結果を用 いて、生成と消滅を考慮して調節する. 乱流拡散は、力学過程と同時に積分される ため $2\Delta t$ の時間ステップで陽解法を用いて積分され、生成、消滅部分は、Tiedtke (1993) に倣って解析的に積分する.

$$q_{cw}^* = q_{cw}^{t-\Delta t} + \left(\frac{\partial q_{cw}}{\partial t}\right)_{VD} (2\Delta t)$$
(15.4)

$$q_{cw}^{t+\Delta t} = q_{cw}^* e^{-\frac{2\Delta t}{\tau_{cw}}} + \tau_{cw} P_{cw} (1 - e^{-\frac{2\Delta t}{\tau_{cw}}})$$
(15.5)

降水率, P, は, 下のように求められる.

$$P = \frac{1}{2\Delta t} \sum_{k=1}^{N} \left\{ q_{cw,k}^{t-\Delta t} + P_{cw,k}(2\Delta t) - q_{cw,k}^{t+\Delta t} \right\} \frac{\Delta p_k}{g}$$
(15.6)

これを、下のように最下層の温度で雨と雪に分ける.

$$P_{rain} = \begin{cases} P & (T_1 \ge T_f) \\ 0 & (T_1 < T_f) \end{cases}$$
(15.7)

$$P_{snow} = \begin{cases} 0 & (T_1 \ge T_f) \\ P & (T_1 < T_f) \end{cases}$$
(15.8)

第17章 飽和比湿・凝結温度

17.1 はじめに

dcpam5では、飽和比湿と二酸化炭素の凝結温度を計算する式を実装している.また、飽和比湿を計算するための式としては、地球流体電脳倶楽部 AGCM5 で用いられていた式と Nakajima et al. (1992) で使われた式の二種を用意している¹². 以下にそれぞれの説明を記す.

17.2 飽和比湿

飽和比湿 $q^*(T,p)$ は飽和蒸気圧 $e^*(T)$ を用いて近似的に,

$$q^*(T,p) = \frac{\epsilon e^*(T)}{p}.$$
 (17.1)

と表す. ここで, $\epsilon = \frac{m_v}{\overline{m}}$, であり, m_v , \overline{m} はそれぞれ水蒸気の分子量, 平均分子量である. また, これより,

$$\frac{\partial q^*}{\partial T}(T,p) = \frac{\epsilon}{p} \frac{\partial e^*}{\partial T}(T)$$
(17.2)

である.

以下では,現状実装されている飽和水蒸気圧の式を示す.

2013/10/08(地球流体電脳倶楽部)

¹現状, Nakajima et al. (1992)の飽和水蒸気の式を用意しているが、この式は AGCM5 の式に あるパラメータを与えた場合に対応している.

²(yot, 2013/10/01) 以下には、Tetens (1930) の式についても記述があるが、現状まだ実装していない。

17.2.1 AGCM5 で用いられた式

AGCM5 で用いていた飽和水蒸気圧の式は, Numaguti (1992) に基づくものであろ うと考えられる、この式は下のように表される、

$$e^*(T) = e^*(T = 273 \text{K}) \exp\left\{\frac{L}{R_v}\left(\frac{1}{273} - \frac{1}{T}\right)\right\},$$
 (17.3)

である³. ここで, $e^*(T = 273 \text{K}) = 611$ [Pa] とする

また、この式より

$$\frac{\partial e^*}{\partial T}(T) = \frac{L}{R_v T^2} e^*(T = 273 \text{K}) \exp\left\{\frac{L}{R_v} \left(\frac{1}{273} - \frac{1}{T}\right)\right\}$$
(17.5)

となる.

Nakajima et al. (1992) で用いられた式 17.2.2

Nakajima et al. (1992) では, Eisenberg and Kauzmann (1961)⁴ で与えられてい る飽和水蒸気圧表と式を近似的に表現する下の式を用いている.

$$e^*(T) = p_0^* \exp\left(-\frac{L}{RT}\right) \tag{17.6}$$

ここで, $p_0^* = 1.4 \times 10^{11}$ Pa, l = 43655 J mol⁻¹, R は普遍気体定数⁵ である⁶.

また、この式より

$$\frac{\partial q^*}{\partial T}(T) = \frac{L}{RT^2} p_0^* \exp\left(-\frac{L}{RT}\right) \tag{17.7}$$

となる.

 3 この飽和蒸気圧の式は、下の式から、蒸発の潜熱L、水蒸気の気体定数 R_v を一定として導出し たものである.

$$\frac{1}{e_v^*}\frac{\partial e_v^*}{\partial T} = \frac{L}{R_v T^2} \tag{17.4}$$

4この訳書が「水の構造と物性」と思われる.

 5 Nakajima et al. (1992) では R = 8.314 J mol $^{-1}$ K $^{-1}$ である. 6 この式と値は, (17.3) において, $\frac{L}{R_{v}} = 5251$ とおいた場合に相当する.

17.2.3 Tetens (1930) の式

(yot, 2013/10/01) この式は現在まだ実装していない.

Tetens (1930) では、水と氷に対する飽和蒸気圧として下の式を提唱している⁷.

$$e^{*}(T) = e_{0}^{*} \exp\left\{a\frac{T - T_{0}}{T - b}\right\}$$
(17.8)

ここで、 $e_0^* = 6.1078 \times 10^2$ Pa, $T_0 = 273.16$ である. また、水に対しては、a = 17.2693882, b = 35.86, 氷に対しては、a = 21.8745584, b = 7.66 である.

また、この式より、

$$\frac{\partial e^*}{\partial T}(T) = a \frac{T_0 - b}{(T - b)^2} e_0^* \exp\left\{a \frac{T - T_0}{T - b}\right\}$$
(17.9)

となる.

17.3 二酸化炭素の凝結温度

二酸化炭素の凝結温度は、Pollack et al. (1981) に従って、下の式を用いて求める.

$$T = 149.2 + 6.48 \times \log(1.35 \times 10^{-3}p) \tag{17.10}$$

17.4 参考文献

- Murray, F. W., 1967: On the computation of saturation vapor pressure, J. Appl. Meteor., 6, 203–204.
- Nakajima, S., Hayashi, Y.-Y., Abe, Y., 1992: A study on the "runaway greenhouse effect" with a one dimensional radiative convective equilibrium model. J. Atmos. Sci., 49, 2256–2266.

Numaguti, A., 1982: 熱帯における積雲活動の大規模構造に関する数値実験, 東京 大学博士論文.

 $^{^{7} \}mathrm{Tetens}$ (1930) は独語で書かれているため、 独語に明るくない方は Murray (1967) を参照する と良いかもしれない.

Pollack, J. B., C. B. Leovy, P. W. Greiman, and Y. Mintz, 1981: A Martian general circulation experiment with large topography, J. Atmos. Sci., 38, 3–29.

Tetens, O., 1930: Über einige meteorologische Begriffe, Z. Geophys., 6, 297–309.

カウズマン・アイゼンバーグ著, 関集三・松尾隆祐訳, 1975: 水の構造と物性, み すず書房, pp.302.

付 録A 惑星大気の物理定数

A.1 地球大気の物理定数

地球大気の基本的な物理定数を以下に示す.

惑星半径	a	m	6.37×10^6
重力加速度	g	${\rm m~s^{-2}}$	9.8
乾燥大気の定圧比熱	C_p	$\rm J~kg^{-1}~K^{-1}$	1004.6
乾燥大気の気体定数	R	$\rm J~kg^{-1}~K^{-1}$	287.04
蒸発潜熱	L	$\rm J~kg^{-1}$	2.5×10^6
水蒸気定圧比熱	C_v	$\rm J~kg^{-1}~K^{-1}$	1810.
水蒸気気体定数	R_v	$\rm J~kg^{-1}~K^{-1}$	461.
液体水の密度	$d_{\mathrm{H_2O}}$	$\rm J~kg^{-1}~K^{-1}$	1000.
水蒸気分子量比	ϵ_v		0.622
仮温度の係数	$\delta_v = \epsilon_v^{-1} - 1$		0.606
乾燥大気の定圧比熱と気体定数の比	$\kappa = R/C_p$		0.286
Kálman 定数	k		0.4

付 録 B 座標系・変換公式に関する 解説

B.1 球面調和函数

ここでは連続系での球面調和函数を定義し、スペクトル計算の理解に必要な性質を 挙げ、証明する.

まず球面調和函数を定義し、次いで球面調和函数が完全直交系をなすことを主張する.このことにより、球面上に分布するあらゆる連続関数が球面調和函数の重ね合わせで一意的に表されることになる.

球面調和函数は2次元ラプラシアンに関する固有関数であり、このために全波数という概念が生まれる.参考までにこのことも記しておく.

さらに,球面調和函数を空間微分した結果も書いておく.

- 1. 定義と性質 (球面調和函数, Legendre 函数, Legendre 陪函数)
- 2. 空間微分
- 3. **全波数の概念**

また、イメージをつかむために、ルジャンドル(陪) 関数のグラフを示す.

B.1.1 定義と性質

ここでは、岩波公式集¹の Legendre 函数・陪函数 \tilde{P}_n^m , 2 で規格化した Legendre 函数・陪函数 P_n^m , 4π で規格化した球面調和函数 Y_n^m の順に定義する. さらにそれ らの性質として、従う微分方程式、漸下式、完全規格直交性について述べる.

岩波公式集の Legendre 函数・陪函数 \tilde{P}_n^m

 定義

岩波公式集によると Legendre 函数・陪函数 $\tilde{P}_n^m(\mu)$ は $-1 \le \mu \le 1$ において 次式で定義される (Rodrigues の公式).

$$\tilde{P}_n^m \equiv \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
(B.1)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 \tilde{P}_n^0 を \tilde{P}_n とも書く.

$$\frac{d}{d\mu} \left\{ (1-\mu^2) \frac{d}{d\mu} \tilde{P}_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} \tilde{P}_n^m = 0.$$
(B.2)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

$$(n - |m| + 1)\tilde{P}_{n+1}^m - (2n + 1)\mu\tilde{P}_n^m + (n + |m|)\tilde{P}_{n-1}^m = 0.$$
(B.3)

ただし, m, n は $0 \le |m| \le n - 1$, または m = n = 0 を満たす整数である.

さらに、次の関係式が成り立つ.

$$(1-\mu^2)\frac{d}{d\mu}\tilde{P}_n^m = (n+|m|)\tilde{P}_{n-1}^m - n\mu\tilde{P}_n^m.$$
 (B.4)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

¹森口, 宇田川, 一松編「数学公式 III」,1960 を指す.

• 完全規格直交性

 $\tilde{P}_n^m(\mu)$ $(n = |m|, |m + 1, \cdots)$ は次の直交関係を満たす.

$$\int_{-1}^{1} \tilde{P}_{n}^{m}(\mu) \tilde{P}_{n'}^{m}(\mu) d\mu = \frac{2}{2n+1} \frac{(n+|m|)!}{(n-|m|)!} \delta_{nn'}.$$
 (B.5)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{\tilde{P}_n^m | n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m \tilde{P}_n^m(\mu), \tag{B.6}$$

$$\tilde{A}_{n}^{m} = \frac{2n+1}{2} \frac{(n-|m|)!}{(n+|m|)!} \int_{-1}^{1} A(\mu) \tilde{P}_{n}^{m}(\mu) d\mu$$
(B.7)

と表される.

2 で規格化した Legendre 函数・陪函数 P_n^m

 定義

2 で規格化した Legendre 函数・陪函数 $P_n^m(\mu)$ は $-1 \le \mu \le 1$ において次式 で定義される.

$$P_n^m \equiv \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \tilde{P}_n^m = \sqrt{\frac{(2n+1)(n-|m|)!}{(n+|m|)!}} \frac{(1-\mu^2)^{\frac{|m|}{2}}}{2^n n!} \frac{d^{n+|m|}}{d\mu^{n+|m|}} (\mu^2 - 1)^n.$$
(B.8)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である. Legendre 函数 P_n^0 を P_n とも書く.

Legendre 函数・陪函数の満たす方程式

 $P_n^m(\mu)$ は、次の方程式を満たす.

$$\frac{d}{d\mu} \left\{ (1-\mu^2) \frac{d}{d\mu} P_n^m \right\} + \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} P_n^m = 0.$$
(B.9)

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

Legendre 函数・陪函数の従う漸化式

 $P_n^m(\mu)$ は、次の漸化式に従う.

$$(n - |m| + 1)\sqrt{\frac{1}{2n + 3} \frac{(n + 1 + |m|)!}{(n + 1 - |m|)!}} P_{n+1}^{m} - (2n + 1)\sqrt{\frac{1}{2n + 1} \frac{(n + |m|)!}{(n - |m|)!}} \mu P_{n}^{m} + (n + |m|)\sqrt{\frac{1}{2n - 1} \frac{(n - 1 + |m|)!}{(n - 1 - |m|)!}} P_{n-1}^{m} = 0,$$
(B.10)

$$P_{n+1}^{m} = \sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \mu P_{n}^{m} - \sqrt{\frac{(2n+1)(2n+3)}{(n-|m|+1)(n+|m|+1)}} \sqrt{\frac{(n-|m|)(n+|m|)}{(2n+1)(2n-1)}} P_{n-1}^{m}.$$
(B.11)

ただし, m, n は $0 \le |m| \le n - 1$, または m = n = 0 を満たす整数である. さらに次の関係式が成り立つ.

$$(1-\mu^2)\frac{d}{d\mu}P_n^m = (n+|m|)\sqrt{\frac{(n-|m|)(2n+1)}{(n+|m|)(2n-1)}}P_{n-1}^m - n\mu P_n^m.$$
 (B.12)

ただし, m, n は $0 \le |m| \le n - 1$ を満たす整数である.

• 完全規格直交性

 $P_n^m(\mu)$ $(n = |m|, |m + 1, \cdots)$ は次の直交関係を満たす.

$$\int_{-1}^{1} P_{n}^{m}(\mu) P_{n'}^{m}(\mu) d\mu = 2\delta_{nn'}.$$
(B.13)

ただし, m, n, n' は $0 \le |m| \le n, n'$ を満たす整数である.

 $-1 \leq \mu \leq 1$ で定義される連続関数 $A(\mu)$ は $\{P_n^m | n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\mu) = \sum_{n=|m|}^{\infty} \tilde{A}_n^m P_n^m(\mu), \qquad (B.14)$$

$$\tilde{A}_{n}^{m} = \frac{1}{2} \int_{-1}^{1} A(\mu) P_{n}^{m}(\mu) d\mu$$
(B.15)

と表される.

球面調和函数 Y_n^m

 定義

球面調和函数 $Y_n^m(\lambda, \varphi)$ は Legendre 函数 $P_n^m(\sin \varphi)$, 三角関数 $\exp(im\lambda)$ を 用いて次のように定義される.

$$Y_n^m(\lambda,\varphi) \equiv P_n^m(\sin\varphi) \exp(im\lambda). \tag{B.16}$$

ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

- 球面調和函数の満たす方程式
 - $Y_n^m(\lambda, \varphi)$ は次の方程式を満たす.

$$\left[\frac{1}{\cos\varphi}\frac{\partial}{\partial\varphi}\left(\cos\varphi\frac{\partial}{\partial\varphi}\right) + \frac{1}{\cos^2\varphi}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0.$$
(B.17)

すなわち,

$$\left[\frac{\partial}{\partial\mu}\left((1-\mu^2)\frac{\partial}{\partial\mu}\right) + \frac{1}{1-\mu^2}\frac{\partial^2}{\partial\lambda^2} + n(n+1)\right]Y_n^m = 0$$
(B.18)

の解である. ただし, m, n は $0 \le |m| \le n$ を満たす整数である.

完全規格直交性

 Y_n^m は次の直交関係を満たす.

$$\int_{-1}^{1} Y_n^m(\lambda,\varphi) Y_{n'}^{m'*}(\lambda,\varphi) d(\sin\varphi) d\lambda = 4\pi \delta_{mm'} \delta_{nn'}.$$
 (B.19)

ただし, m, m', n, n' は $0 \le |m| \le n \ge 0 \le |m'| \le n'$ とを満たす整数である. 球面上で定義される連続関数 $A(\lambda, \varphi)$ は $\{Y_n^m | m = 0, 1, 2, \cdots, n = |m|, |m+1|, \cdots\}$ を用いて

$$A(\lambda,\varphi) = \sum_{m=0}^{\infty} \sum_{n=|m|}^{\infty} \tilde{A}_n^m Y_n^m(\lambda,\varphi), \qquad (B.20)$$

$$\tilde{A}_{n}^{m} = \frac{1}{4\pi} \int_{-1}^{1} d(\sin\varphi) \int_{0}^{2\pi} d\lambda A(\lambda,\varphi) Y_{n}^{m*}(\lambda,\varphi)$$
(B.21)

と表される.

 $e^{-2}\exp(im\lambda)$ は $\int_{0}^{2\pi}\exp(im\lambda)\exp(-im'\lambda)d\lambda = 2\pi\delta_{mm'}$ を満たす. ただし, m,m'は整数である.

B.1.2 球面調和函数の空間微分

ここでは、球面調和函数 $Y_n^m(arphi,\lambda)$ の

- *x* 微分
- y 微分
- 2次元ラプラシアン

の計算をする.

x 微分

$$\frac{1}{r\cos\varphi}\frac{\partial Y_n^m}{\partial\lambda} = \frac{1}{r\cos\varphi}\frac{\partial}{\partial\lambda}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{im}{r\cos\varphi}P_n^m(\sin\varphi)\exp(im\lambda).$$
(B.22)

y 微分

$$\frac{1}{r}\frac{\partial Y_n^m}{\partial \varphi} = \frac{1}{r}\frac{\partial}{\partial \varphi}\left(P_n^m(\sin\varphi)\exp(im\lambda)\right) = \frac{\sqrt{1-\mu^2}}{r}\frac{d}{d\mu}P_n^m(\mu)\exp(im\lambda). \quad (B.23)$$

2次元ラプラシアン

$$\nabla_{H}^{2} Y_{n}^{m} \equiv \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left((1 - \mu^{2}) \frac{\partial}{\partial \mu} \right) + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m}$$
$$= \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] Y_{n}^{m} \qquad (B.24)$$
$$= -\frac{n(n+1)}{r^{2}} Y_{n}^{m}$$

B.1.3 コメント — 全波数について

球面調和函数 $Y_n^m(\lambda, \varphi)$ において n のことを全波数と呼ぶ.

全波数には、座標系の回転に関して不変である、という特徴がある. すなわち、任意の $Y_n^m(\lambda, \varphi)$ は回転して得られる座標系 (λ', φ') における全波数 n の球面調和函数 $\{Y_n^m(\lambda', \varphi') | m = -n, -n+1, \cdots, n\}$ の和で表現できる :

$$Y_n^m(\lambda,\varphi) = \sum_{m'=-n}^n A_n^{m'} Y_n^{m'*}(\lambda',\varphi').$$
(B.25)

のである³. この特徴は, 球面調和函数が 2 次元ラプラシアンの固有値であること によっている⁴.

³この特徴を言い替えれば、全波数 n の球面調和函数の重ね合わせで表現できる分布関数は座標 系を回転させた系においても全波数 n の球面調和函数の重ね合わせで表現できることになる.

 $^{{}^{4}\}nabla_{H}^{2} \equiv \frac{1}{r^{2}} \left[\frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right]$ の,固有値を $-\frac{n(n+1)}{r^{2}}$ とする固有関数であることと、スカラー演算子 ∇_{H}^{2} が座標系の回転に関して不変な演算子であることとに起因する.

カラー演算子 ∇_H^2 が座標系の回転に関して不変な演算子であることとに起因する. すなわち, $\nabla_H^2 Y_n^m(\lambda, \varphi) = -\frac{n(n+1)}{r^2} Y_n^m(\lambda, \varphi)$ より,球面調和函数 $Y_n^m \exp(im\lambda)$ は固有値を $-\frac{n(n+1)}{r^2}$ とする ∇_H^2 の固有関数である. { $Y_n^m | n = 0, 1, 2, \cdots, m = -n, -n+1, \cdots, n$ } の完全直交性より, { $Y_n^m | m = -n, -n+1, \cdots, n$ } は $\nabla_H^2 f = -\frac{n(n+1)}{r^2} f$ の解空間を張っている基底である. 座標系を回転させて,新たな座標系での球面調和函数 $Y_n^m(\lambda', \varphi')$ の和の形で前の座標系での球面調和函数 $Y_n^m(\lambda, \varphi)$ を表現することを考えよう.

絶対系で見て同じ位置の値を比べると、2次元ラプラシアンを演算した値は不変なので、前の座標 系での球面調和函数 $Y_n^m(\lambda', \varphi')$ は新たな座標系においても $\nabla_H^{'2}Y_n^m = -\frac{n(n+1)}{r^2}Y_n^m$ の解である. 新たな座標系の球面調和函数の集合 $\{Y_n^m(\lambda', \varphi')|m = -n, -n+1, \cdots, n\}$ も $\nabla_H^{'2}Y_n^m = -\frac{n(n+1)}{r^2}Y_n^m$ の解空間の基底である. したがって、前の座標系の球面調和函数は新たな座標系の球面調和函数の和の形で書ける.

B.1.4 グラフ

 $P_n^m(\mu)$ の概形をつかむために、2で規格化した $P_n, P_n^1, P_n^{2.5}$ のグラフを示す.

岩波公式集の Legendre 函数 \tilde{P}_n のグラフ (森口, 宇田川, 一松, 1960)

Legendre 函数 $\overline{P_n^1} = P_n^1/\sqrt{2}, \overline{P_n^2} = P_n^2/\sqrt{2}$ のグラフ (森口, 宇田川, 一松, 1960)

⁵(2005/4/4 石渡) 関数形も書いておきたい. グラフは自分で描きたい.

2013/10/08(地球流体電脳倶楽部)spectral/spectral.tex(spectral/spl-spectral-differentiation.tex)

B.2 微分公式, GCMの変数の微分関係式

ここでは、スカラー量、ベクトルの微分を計算する. さらにそれらを元に、発散 D、 渦度 ζ , 速度ポテンシャル χ , 流線関数 ψ と (u, v) との関係を付ける.

B.2.1 スカラー量の微分

スカラー量
$$f(\lambda, \varphi)$$
 の x 微分は $\frac{1}{r \cos \varphi} \frac{\partial f}{\partial \lambda}$ で与えられる.

fの y 微分は $\frac{1}{r} \frac{\partial f}{\partial \varphi} \left(= \frac{\cos \varphi}{r} \frac{\partial f}{\partial \mu} \right)$ で与えられる.

fの2次元ラプラシアンは

$$\nabla_{H}^{2} f \equiv \frac{1}{r^{2}} \left[\frac{1}{\cos \varphi} \frac{\partial}{\partial \varphi} \left(\cos \varphi \frac{\partial}{\partial \varphi} \right) + \frac{1}{\cos^{2} \varphi} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$
$$= \frac{1}{r^{2}} \left[\frac{\partial}{\partial \mu} \left\{ (1 - \mu^{2}) \frac{\partial}{\partial \mu} \right\} + \frac{1}{1 - \mu^{2}} \frac{\partial^{2}}{\partial \lambda^{2}} \right] f$$
(B.26)

で与えられる.

B.2.2 ベクトル量の微分

2次元ベクトル場 $\boldsymbol{v} = (v_1, v_2)$ の水平発散は

$$\operatorname{div}_{H} \boldsymbol{v} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{2} \cos \varphi)$$
$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{1}}{\partial \lambda} + \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{2})$$
(B.27)

で与えられる.

v の回転の r 成分は,

$$(\operatorname{rot} \boldsymbol{v})_{r} \equiv \frac{1}{r \cos \varphi} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r \cos \varphi} \frac{\partial}{\partial \varphi} (v_{1} \cos \varphi)$$
$$= \frac{1}{r \sqrt{1 - \mu^{2}}} \frac{\partial v_{2}}{\partial \lambda} - \frac{1}{r} \frac{\partial}{\partial \mu} (\sqrt{1 - \mu^{2}} v_{1})$$
(B.28)

spectral/spectral.tex(spectral/spl-spectral-differentiation.tex) 2013/10/08(地球流体電脳倶楽部)

で与えられる.

以上で得られた微分公式を元に,以下に実際にGCMで使用する便利な微分の公式 を並べておく.

B.2.3 発散

水平分布する速度場の水平発散 D を u, v を用いて表す

$$D = \frac{1}{r\cos\varphi} \frac{\partial u}{\partial\lambda} + \frac{1}{r\cos\varphi} \frac{\partial}{\partial\varphi} (v\cos\varphi).$$
(B.29)

B.2.4 渦度

水平分布する速度場の渦度 $\zeta \in u, v \in \mathcal{H}$ いて表す $\zeta = \frac{1}{r\cos\varphi} \frac{\partial v}{\partial \lambda} - \frac{1}{r\cos\varphi} \frac{\partial}{\partial \varphi} (u\cos\varphi). \tag{B.30}$

B.2.5 速度ポテンシャル, 流線関数と (*u*, *v*)

速度ポテンシャル χ , 流線関数 ψ は

$$D \equiv \nabla_H^2 \chi, \tag{B.31}$$

$$\zeta \equiv \nabla_H^2 \psi \tag{B.32}$$

で定義される. (u,v)を χ, ψ で表す.

$$u = -\frac{1}{r}\frac{\partial\psi}{\partial\varphi} + \frac{1}{r\cos\varphi}\frac{\partial\chi}{\partial\lambda},\tag{B.33}$$

$$v = \frac{1}{r\cos\varphi}\frac{\partial\psi}{\partial\lambda} + \frac{1}{r}\frac{\partial\chi}{\partial\varphi}$$
(B.34)

となる.

B.3 Legendre函数 P_n の性質

ここでは Legendre 函数 P_n の性質である

1. n-1次以下の多項式との積を $-1 \le \mu \le 1$ まで積分すると零になること

2. $P_n(\mu)$ が $-1 < \mu < 1$ に n 個の零点を持つこと,

を記す.1より Gauss 格子を定義することが保証される.また,1,2 は共に Gauss-Legendre の公式の証明に用いられる.

B.3.1 多項式とLegendre 函数の積の積分

 $P_n(\mu)$ は、 μ の n次多項式である.n-1次以下の任意の多項式は $P_0 \sim P_{n-1}$ の和で表されること、 P_n の直交性から明らかに、n-1次以下の任意の多項式 $f(\mu)$ との積を積分すると

$$\int_{-1}^{1} f(\mu) P_n(\mu) d\mu = 0 \tag{B.35}$$

が成り立つことがわかる.

B.3.2 Legendre 函数の零点

 P_n は $-1 < \mu < 1$ に n 個の互いに異なる零点を持っている. このことについて, 以下に証明しておく. (寺沢, 1983 の 10.7 節より)

- 1. $f(x) = (x-1)^n (x+1)^n$ を導入する.
- 2. f = 0の解は, x = -1, 1である. ゆえに, Rolle の定理により, f' はある α ($-1 < \alpha < 1$) で $f'(\alpha) = 0$ となる. $f' = 2nx(x^2 - 1)^{n-1}$ より, f' = 0の解は $x = -1, \alpha, 1$ のみである.
- 3. 同様に、f'' = 0の解は $x = -1, \beta_1, \beta_2, 1$ ($-1 < \beta_1 < \beta_2 < 1$)のみ.
- 4. 以上を繰り返すと, $f^{(n)} = 0$ の解は $-1 \ge 1$ の間で互いに異なる n 個の解を 持つ. (x = -1, 1 は解でないことに注意せよ.)
- 5. したがって, $P_n = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 1)^n$ は -1 と 1 の間で互いに異なる n 個の 解を持つ. (証明終り)

この零点の求め方としては, $x_j = \cos \frac{j-1/2}{n} \pi$ を近似解として Newton 法を用いるという方法がある.

B.4 積分評価

B.4.1 Gauss の台形公式

ここでは Gauss の台形公式を示す.

波数 M 以下の三角函数で表現される $g(\lambda)$ ($0 \le \lambda < 2\pi$)

$$g(\lambda) = \sum_{m=-M}^{m=M} g_m \exp(im\lambda)$$
(B.36)

について M < I を満たすように I をとると,

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^{I} g(\lambda_n),$$
 (B.37)
$$\lambda_n = \frac{2\pi (n-1)}{I} \quad (n = 1, 2, \cdots, I)$$

が成り立つ. これを Gauss の台形公式という.

より実用的な公式は,

$$\sum_{n=1}^{I} \exp(im\lambda_n) = \begin{cases} I & (m=0), \\ 0 & (0 < |m| < I), \end{cases}$$

$$\lambda_n = \frac{2\pi(n-1)}{I} \quad (n = 1, 2, \cdots, I)$$
(B.38)

である. この証明は, I > M(|m|の最大値) より $m \neq 0$ の時には $\exp(im\lambda_n) = \exp\left(\frac{2\pi im(n-1)}{I}\right)$ において, 全ての n について m(n-1) が Iの整数倍になることがないことを考慮すると明らかである (m, n-1はともに Iよりも小さい整数なので, m(n-1)はIの整数倍にならない)⁶.

以下に Gauss の台形公式の証明を記す.まず, 左辺を計算すると,

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \sum_{m=-M}^M \frac{1}{2\pi} g_m \int_0^{2\pi} \exp(im\lambda) d\lambda = g_0 \tag{B.40}$$

⁶等比級数の和を直接計算しても良い.

$$\sum_{n=1}^{I} \exp\left\{im\frac{2\pi(n-1)}{I}\right\} = \frac{1 - \left(e^{\frac{im2\pi}{I}}\right)^{I}}{1 - e^{\frac{im2\pi}{I}}} = \frac{1 - e^{im2\pi}}{1 - e^{\frac{im2\pi}{I}}} = 0$$
(B.39)

である. ここで, $\int_0^{2\pi} \exp(im\lambda) d\lambda$ は m = 0 の項しか残らないことを使った. 一方 右辺は

$$\frac{1}{I}\sum_{n=1}^{I}g(\lambda_{n}) = \frac{1}{I}\sum_{n=1}^{I}\sum_{m=-M}^{M}g_{m}\exp(im\lambda_{n})$$
$$= g_{0} + \sum_{m=-M, m\neq 0}^{M}\frac{g_{m}}{I}\sum_{n=1}^{I}\left(\exp(\frac{2\pi im}{I})\right)^{n-1}.$$
 (B.41)

ここで、上に示した「より実用的な公式」により

$$\sum_{n=1}^{I} \left(\exp(\frac{2\pi i m}{I}) \right)^{n-1} = 0 \quad (m \neq 0)$$
 (B.42)

が成り立つ.したがって,

$$\frac{1}{2\pi} \int_0^{2\pi} g(\lambda) d\lambda = \frac{1}{I} \sum_{n=1}^I g(\lambda_n)$$
(B.43)

となる.

B.4.2 Gauss-Legendre の公式

 $f(\mu)$ を 2J - 1次以下の多項式とする. P_n を 2 で規格化した n 次の Legendre 函数とする. このとき、 $\int_{-1}^{1} f d\mu$ は P_J の零点である Gauss 格子 μ_j ($j = 1, 2, \dots, J$) における fの値 $f(\mu_j)$ のみを用いて、次式にもとづいて正確に評価することができる.

$$\int_{-1}^{1} f(\mu) d\mu = 2 \sum_{j=1}^{J} f(\mu_j) w_j, \tag{B.44}$$

$$w_j = \frac{1}{2} \int_{-1}^{1} \frac{P_J(\mu)}{(\mu - \mu_j) P'_J(\mu_i)} d\mu = \frac{(2J - 1)(1 - \mu_j^2)}{(JP_{J-1}(\mu_j))^2}.$$
 (B.45)

ここで, w_i は Gauss 荷重と呼ばれる.

以下では上の式を証明する. ただし, Legendre 函数としては, 最初は岩波公式集の Legendre 函数 \tilde{P}_n を用い, 最後に 2 で規格化した Legendre 函数 P_n に直すことに する⁷.

spectral/spectral.tex(spectral/spl-gaussgr.tex)

 $^{^7}$ 混乱を招かぬよう、このような手続きを踏む.実際、公式集を含む他の文献には \tilde{P}_n^m の公式が書かれていることが多いので、このように書く方が他と参照しやすいであろう.

<u>STEP 1</u> Lagrange 補間の導入

 $f(\mu)$ を K 次多項式 ($0 \le K \le 2J - 1$)とする. \tilde{P}_n を岩波公式集の Legendre 函数 (Rodrigues の公式)とする.

$$\int_{-1}^{1} \tilde{P}_{n}(\mu) \tilde{P}_{n'}(\mu) d\mu = \frac{2}{2n+1} \delta_{nn'}.$$
 (B.46)

 $L(\mu)$ を, $f(\mu_i)$ を Lagrange 補間公式にしたがって補間した多項式として定義する.

$$L(\mu) \equiv \sum_{j=1}^{J} f(\mu_j) \prod_{k=1, k \neq j}^{J} \frac{\mu - \mu_k}{\mu_j - \mu_k}.$$
 (B.47)

このとき, 各 *j* について $L(\mu_j) = f(\mu_j)$ である. ここで *L* は, $0 \le K \le J - 1$ の時 (*f* が *J* - 1 次以下の多項式) のときは厳密に *L* = *f* になる⁸ ことに注意せよ.

したがって、関数 $f(\mu) - L(\mu)$ は

- $0 \le K \le J 1$ の時, 0 である.
- $J \leq K \leq 2J 1$ の時, $\mu = \mu_j$ を零点とする K 次多項式である. μ_j は J 次多項式 $\tilde{P}_J(\mu)$ の零点で あることを思い出すと, f - Lは $\tilde{P}_J(\mu)$ で割り切れるので, ある K - J次多 項式 $S(\mu)$ を用いて,

$$f(\mu) - L(\mu) = \tilde{P}_J(\mu)S(\mu) \tag{B.48}$$

と書くことができる.

 $f(\mu) - L(\mu)$ を μ について -1 から 1 まで積分する. $J \le K \le 2J - 1$ の時につい

⁸このことはL-fがJ-1次以下の多項式であること, J個の零点 μ_j を持つことから明らか.

ては Legendre 函数の直交性より, $\tilde{P}_J(\mu)S(\mu)$ の積分は零である. したがって,

$$f_{-1}^{1} f(\mu) d\mu = \int_{-1}^{1} L(\mu) d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\prod_{k=1}^{J} (\mu - \mu_{k})}{(\mu - \mu_{j}) \prod_{k=1, k \neq j}^{J} (\mu_{j} - \mu_{k})} d\mu$$

$$= \sum_{j=1}^{J} f(\mu_{j}) \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j}) \tilde{P}_{J}'(\mu_{j})} d\mu$$

$$= 2 \sum_{j=1}^{J} f(\mu_{j}) w_{j}$$
(B.49)

ここで、証明すべき式の P_J は規格化されていて、上の式の \tilde{P}_J は規格化されてい ないのにもかかわらず同じ w_j が使われているが、 \tilde{P}_J と P_J の規格化定数は同じ なので consistent である.

$$\underline{\text{STEP 2}}$$
 $w_j = \frac{1}{2} \int_{-1}^1 \frac{\tilde{P}_J(\mu)}{(\mu - \mu_j)\tilde{P}'_J(\mu_j)} d\mu$ の漸化式を用いた変形

漸化式 (岩波の Lgendre 関数・陪関数の従う漸化式) において m=0 とした式

$$(n+1)\tilde{P}_{n+1}(\mu) = (2n+1)\mu\tilde{P}_n(\mu) - n\tilde{P}_{n-1}(\mu) \quad (n=0,1,2,\cdots)$$
(B.50)

より,

$$(n+1) \begin{vmatrix} \tilde{P}_{n+1}(x) & \tilde{P}_{n}(x) \\ \tilde{P}_{n+1}(y) & \tilde{P}_{n}(y) \end{vmatrix} = \begin{vmatrix} (2n+1)x\tilde{P}_{n}(x) - n\tilde{P}_{n-1}(x) & \tilde{P}_{n}(x) \\ (2n+1)y\tilde{P}_{n}(y) - n\tilde{P}_{n-1}(y) & \tilde{P}_{n}(y) \end{vmatrix}$$
$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y) + \tilde{P}_{n-1}(y)\tilde{P}_{n}(x))$$
$$= (2n+1)(x-y)\tilde{P}_{n}(x)\tilde{P}_{n}(y) + n \begin{vmatrix} \tilde{P}_{n}(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_{n}(y) & \tilde{P}_{n-1}(y) \end{vmatrix}$$
(B.51)

となる. この式を $n = 0, 1, \dots, n-1$ について加えると,

$$n \begin{vmatrix} \tilde{P}_n(x) & \tilde{P}_{n-1}(x) \\ \tilde{P}_n(y) & \tilde{P}_{n-1}(y) \end{vmatrix} = \sum_{k=0}^{n-1} (2k+1)(x-y)\tilde{P}_k(x)\tilde{P}_k(y)$$
(B.52)

が成り立つ. ここで $n = J, x = \mu, y = \mu_i$ とすると $\tilde{P}_J(\mu_i) = 0$ より,

$$J\tilde{P}_{J}(\mu)\tilde{P}_{J-1}(\mu_{j}) = \sum_{k=0}^{J-1} (2k+1)(\mu-\mu_{j})\tilde{P}_{k}(\mu)\tilde{P}_{k}(\mu_{j}).$$
(B.53)

よって,

$$\frac{\tilde{P}_{J}(\mu)}{\mu - \mu_{j}} = \frac{\sum_{k=0}^{J-1} (2k+1)\tilde{P}_{k}(\mu)\tilde{P}_{k}(\mu_{j})}{J\tilde{P}_{J-1}(\mu_{j})}$$
(B.54)

である.したがって,

$$w_{j} = \frac{1}{2} \int_{-1}^{1} \frac{\tilde{P}_{J}(\mu)}{(\mu - \mu_{j})\tilde{P}'_{J}(\mu_{j})} d\mu$$

$$= \frac{1}{2J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})} \sum_{k=0}^{J-1} (2k+1)\tilde{P}_{k}(\mu_{j}) \int_{-1}^{1} \tilde{P}_{k}(\mu)d\mu$$

$$= \frac{1}{J\tilde{P}_{J-1}(\mu_{j})\tilde{P}'_{J}(\mu_{j})}$$
(B.55)

である. ただし, (B.55) における積分は, k = 0 の時のみ 0 でない値を持つこと, および $\tilde{P}_0 = 1$ を使った. さらに, 漸化式

$$(1-\mu^2)\frac{\partial P_n}{\partial \mu} = n\tilde{P}_{n-1}(\mu) - n\mu\tilde{P}_n(\mu)$$
(B.56)

で $n = J, \mu = \mu_j$ とする. $\tilde{P}_J(\mu_j) = 0$ より,

$$w_j = \frac{1 - \mu_j^2}{(J\tilde{P}_{J-1}(\mu_j))^2} \tag{B.57}$$

となる.

STEP3 \tilde{P}_n の規格化

 $P_n \epsilon$

$$\int_{-1}^{1} P_n(\mu) P'_n(\mu) d\mu = 2$$
(B.58)

になるように規格化する. $\tilde{P}_{J-1} = \sqrt{rac{1}{2(\mathrm{J}-1)+1}} P_{J-1}$ より,

$$w_j = \frac{1 - \mu_j^2}{(J\sqrt{\frac{1}{2J-1}}P_{J-1}(\mu_j))^2} = \frac{(2J-1)(1-\mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
(B.59)

となる.

まとめ

以上より

$$\int_{-1}^{1} f(\mu) d\mu = 2 \sum_{j=1}^{J} f(\mu_j) w_j, \qquad (B.60)$$

$$w_j = \frac{(2J-1)(1-\mu_j^2)}{(JP_{J-1}(\mu_j))^2}$$
(B.61)

B.5 球面調和函数の離散的直交関係

ここでは球面直交関数の離散的直交関係である選点直交性を示す.

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_{n}^{m}(\mu_{j}) P_{n'}^{m'}(\mu_{j}) \exp(im\lambda_{i}) \exp(-im'\lambda_{i}) w_{j} = I\delta_{nn'}\delta_{mm'}$$
(B.62)

ここで、i, j, m, m', n, n', I, J, M, N(m) は整数で、 $1 \le i \le I, 1 \le j \le J, 0 \le |m|, |m'| \le M, |m| \le n \le N, |m'| \le n' \le N$ であり、 $M \le \left[\frac{I}{2}\right], N(m) \le J - 1$ を満たす.また、 w_j は Gauss 荷重、 $\lambda_i = \frac{2\pi(i-1)}{I}, \mu_j$ は $P_J(\mu)$ の零点である.[]は それを越えない最大の整数を表す.これは、有限な直交多項式系において成り立つ 選点直交性と呼ばれる性質である⁹.

この式を証明する.Legendre 函数・陪函数の定義・(連続系での)直交性, Gauss の台形公式, Legendre 函数の零点を用いた多項式の積分評価を既知とすると,

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$
$$= I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) w_j \delta_{mm'}.$$
(B.63)

⁹別の離散的直交関係については後で述べる.

spectral/spectral.tex(spectral/spl-spherical-orthogonal.tex) 2013/10/08(地球流体電脳倶楽部)

ここで Gauss の台形公式を使った. 更に変形すると

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$

= $I \sum_{j=1}^{J} P_n^m(\mu_j) P_{n'}^m(\mu_j) w_j$
= $\frac{I}{2} \int_{-1}^{1} P_n^m(\mu) P_{n'}^m(\mu) d\mu.$ (B.64)

ここで、Gauss-Legendre の公式を使った.更に、連続系の Legendre 函数・陪函数 の直交性より

$$\sum_{j=1}^{J} \sum_{i=1}^{I} P_n^m(\mu_j) P_{n'}^{m'}(\mu_j) \exp(im\lambda_i) \exp(-im'\lambda_i) w_j$$
$$= I\delta_{nn'}\delta_{mm'}$$
(B.65)

が得られる.以上により、離散化した球面調和関数の選点直交性が示された.

余談ではあるが、直交多項式系においては離散的な直交関係としては選点直交性のほかに次のような直交関係も知られている¹⁰. { $f_k(\mu)$ }($k = 0, 1, 2, \cdots$)を [a, b]で定義された重み $w(\mu)$ 、規格化定数 λ_k の直交多項式 $\left(\int_a^b f_k(\mu)f_{k'}(\mu)w(\mu)d\mu = \lambda_k\delta_{kk'}\right)$ とする. $\mu_j, \mu_{j'}(1 \le j, j' \le J)$ を $f_J(\mu)$ の零点、 $w_j = w(\mu_j)$ とすれば、選点直交性

$$\sum_{j=0}^{J-1} f_k(\mu_j) f_{k'}(\mu_j) w_j = \lambda_k \delta_{kk'}$$
(B.66)

のほかに,

$$\sum_{k=0}^{J-1} \frac{f_k(\mu_j) f_k(\mu_{j'})}{\lambda_k} = \frac{1}{w_j} \delta_{jj'}$$
(B.67)

が成り立つ.

実際, Legendre 函数 $\{P_n\}(n = 0, 1, 2, \dots, J - 1)$ についてはこの関係が成り立つ. すなわち, w_j を GCM で用いている Gauss 荷重として,

$$\sum_{n=0}^{J-1} P_n(\mu_j) P_n(\mu_{j'}) = \frac{1}{w_j} \delta_{jj'}$$
(B.68)

¹⁰以下については,森,1984 「数値解析法」が詳しい.

である.しかし、GCM では Legendre 函数 P_J の零点でのみ値を計算することと、 波数切断の関係とから、Legendre 陪函数 $\{P_n^m\}(n = |m|, |m| + 1, |m| + 2, \dots, N)$ の離散的直交関係は意味がない¹¹. Legendre 函数の直交関係についても、波数切断 により P_n は $n = 0, 1, 2, \dots, N < J - 1$ しか扱わないので¹² 実際には意味がない.

三角関数についても同様な離散的直交関係がある. 選点直交性

$$\sum_{i=0}^{I-1} \exp(im\lambda_i) \exp(-im'\lambda_i) = I\delta_{mm'}$$
(B.69)

のほかに,

$$\sum_{n=-\frac{I}{2}+1}^{\frac{I}{2}} \exp(im\lambda_i) \exp(-im\lambda_{i'}) = I\delta_{ii'}$$
(B.70)

も成り立つ. (ただし, *I* は偶数で *I* = 2*M*. *I* が奇数の場合には, *I* = 2*M* + 1 として, *m* についての和は $-\frac{I-1}{2} \sim \frac{I-1}{2}$ でとる.)しかし GCM では, 波数切断により |*m*| の最大値 *M* は $\frac{I}{3}$ 以下の値なのでやはり意味がない¹³.

B.6 スペクトルの係数と格子点値とのやり取り

ここではスペクトルの係数と格子点値との変換法について述べる. 実際の GCM 計算において必要になるのは

- スペクトルの係数と格子点値との値のやり取り
- ・速度の格子点値の発散 D・渦度 (のスペクトルの係数への変換)
- 速度ポテンシャル χ , 流線関数 ψ (もとは 発散, 渦度)のスペクトルの係数 から速度の格子点値の作成

である.

¹¹そもそも、ここで述べている直交関係は $f_k(k = 0, 1, 2, \dots, K - 1)$ が k次多項式であるよう な直交多項式系において成り立つものである. Legendre 陪函数は m が奇数のときは多項式でない し、m が偶数であっても P_n^m は n次多項式であって、n - m次多項式ではない. その場合にも直交 多項式の議論を拡張してここで述べている直交関係を使えるのか、については未調査である. ¹²T42 ならば、m = 0 で J = 63, N = 42, R21 ならば、m = 0 で J = 63, N = 21,である. ¹³T42 ならば I = 128 に対して M = 42, R21 ならば I = 64 に対して M = 21 である.

B.6.1 スペクトルの係数と格子点値との値のやり取り

スカラー関数 $A(\lambda, \varphi)$ の格子点値とスペクトルの係数とのやり取りは以下のとお りである. ただし、格子点値は A_{ij} $(i = 1, 2, \dots, I, j = 1, 2, \dots, J)$, スペクトル の係数は \tilde{A}_n^m $(m = -M, -M + 1, \dots, M, n = |m|, |m| + 1, \dots, N(m))$ とする.

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} Y_{n}^{m}(\lambda_{i}, \varphi_{j}), \qquad (B.71)$$

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} Y_{n}^{m*}(\lambda_{i}, \varphi_{j}) w_{j}, \qquad (B.72)$$

$$w_j = \frac{(2J-1)(1-\sin^2\varphi_j)}{(JP_{J-1}(\sin\varphi_j))^2}.$$
 (B.73)

以後この文書では簡単のために、
$$\sum_{m=-M}^{M}\sum_{n=|m|}^{N}$$
を $\sum_{m,n}$ と、 $\sum_{i=1}^{I}\sum_{j=1}^{J}$ を $\sum_{i,j}$ と表記する.

B.6.2 スペクトルの係数と格子点値との値のやり取り~東西微分編 まず、

$$g \equiv \frac{\partial f}{\partial \lambda}$$

を考える.

東西微分 (λ 微分) は次式で評価する.

$$g_{ij} \equiv \left[\frac{\partial}{\partial\lambda} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m(\lambda,\varphi)\right)\right]_{ij}.$$
 (B.74)

すなわち,

$$g_{ij} = \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j)$$
(B.75)

である. 変換公式 (B.72) で $A \in g$ とみなしたものと (B.75) とを比較すれば明ら かに¹⁴,

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.76}$$

 $\overline{ 1^4 \texttt{L} \texttt{D} \texttt{I} \texttt{T} \texttt{t} \texttt{t} \texttt{c} \texttt{l}, (g_{ij} =) \sum_{m,n} im \tilde{f}_n^m Y_n^m} = \sum_{m,n} \tilde{g}_n^m Y_n^m \text{ } \texttt{O}$ 両辺に左から $\sum_{i,j} Y_n^{m*}(\lambda_i, \varphi_j) w_j \text{ } \texttt{e}$ 演算 すれば, $im' \tilde{f}_{n'}^{m'} = \tilde{g}_{n'}^{m'} \text{ } \texttt{L} \texttt{L} \texttt{C}$ 得られる.

2013/10/08(地球流体電脳倶楽部) spectral.tex(spectral.tex(spectral-transform.tex)

よって,

$$\tilde{g}_n^m = \frac{1}{I} \sum_{i,j} im f_{ij} Y_n^{m*}(\lambda_i, \varphi_j) w_j \tag{B.77}$$

167

である.

次に,

$$h \equiv \frac{g}{r\cos^2\varphi} = \frac{1}{r\cos^2\varphi} \frac{\partial f}{\partial\lambda} \quad \left[= \frac{\partial}{\partial x} \left(\frac{f}{\cos\varphi} \right) \right]$$

とする. $f \ge h$ とのやり取りを考える. (B.74) より明らかに,

$$h_{ij} = \frac{1}{r\cos^2 \varphi_i} g_{ij}$$
$$h_{ij} = \frac{1}{r\cos^2 \varphi_j} \sum_{m,n} im \tilde{f}_n^m Y_n^m(\lambda_i, \varphi_j).$$

一方, (B.76) より

$$\tilde{h}_{n}^{m} = \left[\frac{\partial}{\partial\lambda}\left(\widetilde{\frac{f}{r\cos^{2}\varphi}}\right)\right]_{n}^{m} = im\left(\widetilde{\frac{f}{r\cos^{2}\varphi}}\right)_{n}^{m}$$
$$= \frac{1}{I}\sum_{i,j}im\left(\frac{f}{r\cos^{2}\varphi}\right)_{ij}Y_{n}^{m*}(\lambda_{i},\varphi_{j})w_{j}$$
$$= \frac{1}{I}\sum_{i,j}imf_{ij}Y_{n}^{m*}(\lambda_{i}\varphi_{j})\frac{w_{j}}{r\cos^{2}\varphi_{j}}.$$
(B.78)

B.6.3 スペクトルの係数と格子点値との値のやり取り~南北微分編

まず,

$$p\equiv \frac{\partial f}{\partial \varphi}$$

を考える.

南北微分 (φ 微分) は次式で評価する.

$$p_{ij} \equiv \left[\frac{\partial}{\partial\varphi} \left(\sum_{m,n} \tilde{f}_n^m Y_n^m\right)\right]_{ij}.$$
 (B.79)

すなわち,

$$p_{ij} = \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$
(B.80)

である. よって, $p_n^m = \frac{1}{I} \sum_{i,j} p_{ij} Y_n^{m*} w_j$ $= \frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} \frac{dP_{n'}^{m'}}{d\varphi} \Big|_j \exp(im'\lambda_i) \right) P_n^m(\varphi_j) \exp(-im\lambda_i) w_j$ $= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) \right) \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j$ $= -\frac{1}{I} \sum_{i,j} f_{ij} \frac{dP_n^m}{d\varphi} \Big|_j \exp(-im\lambda_i) w_j$

となる. ここで、2 行目から 3 行目の等号では、

$$\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j}$$

$$= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} \exp(-im\lambda_{i}) P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) w_{j}$$
(B.81)

を用いた¹⁵.

次に,

$$q \equiv \cos^2 \varphi \frac{\partial f}{\partial \varphi} = \cos^2 \varphi \ p$$

とする.

(B.79) より明らかに、

$$q_{ij} = \cos^2 \varphi_j \sum_{m,n} \tilde{f}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \exp(im\lambda_i)$$

15この証明は以下のとおりである.

$$\begin{split} \sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j} \\ &= I \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} = I \sum_{j} f_{n'}^{m} P_{n}^{m}(\varphi_{j}) \left. \frac{dP_{n'}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} \\ &= \frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n}^{m}(\varphi) \frac{dP_{n'}^{m}}{d\varphi} d\varphi \delta_{mm'}. \end{split}$$

である. 一方,
$$\begin{split} \tilde{q}_{n}^{m} &= \frac{1}{I} \sum_{i,j} q_{ij} Y_{n}^{m*} w_{j} \\ &= \frac{1}{I} \sum_{i,j} \left(\cos^{2} \varphi_{j} \sum_{m',n'} \tilde{f}_{n'}^{m'} \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(im'\lambda_{i}) \right) P_{n}^{m}(\varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= -\frac{1}{I} \sum_{i,j} \left(\sum_{m',n'} \tilde{f}_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \right) \\ &\qquad \times \left. \frac{d}{d\varphi} \left(\cos^{2} \varphi P_{n}^{m} \right) \right|_{j} \exp(-im\lambda_{i}) w_{j} \\ &= -\frac{1}{I} \sum_{i,j} f_{ij} \left. \frac{d}{d\varphi} \left(\cos^{2} \varphi P_{n}^{m} \right) \right|_{j} \exp(-im\lambda_{i}) w_{j} \end{split}$$

が成り立つ. ここで、2 行目から 3 行目において、

$$\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \cos^2 \varphi_j P_n^m(\varphi_j) \exp(im\lambda_i) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_j \exp(-im'\lambda_i) w_j$$
$$= -\sum_{i=1}^{I} \sum_{j=1}^{J} f_{n'}^{m'} \left. \frac{d}{d\varphi} \left(\cos^2 \varphi P_n^m \right) \right|_j \exp(-im\lambda_i) P_{n'}^{m'}(\varphi_j) \exp(im'\lambda_i) w_j$$

を用いた¹⁶.

B.6.4 χ, ψ のスペクトルの係数から速度の格子点値への変換

ここでは χ_n^m, ψ_n^m から u_{ij}, v_{ij} を求める方法を記す.

ここで,部分積分すると

$$\begin{split} \sum_{i} \sum_{j} f_{n'}^{m'} P_{n}^{m}(\varphi_{j}) \exp(im\lambda_{i}) \left. \frac{dP_{n'}^{m'}}{d\varphi} \right|_{j} \exp(-im'\lambda_{i}) w_{j} \\ &= -\frac{I}{2} \int_{-1}^{1} f_{n'}^{m} P_{n'}^{m}(\varphi) \frac{dP_{n}^{m}}{d\varphi} d\varphi \delta_{mm'} \\ &= -I \sum_{j} f_{n'}^{m} P_{n'}^{m}(\varphi_{j}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} w_{j} \delta_{mm'} \\ &= -\sum_{i} \sum_{j} f_{n'}^{m'} P_{n'}^{m'}(\varphi_{j}) \exp(im'\lambda_{i}) \left. \frac{dP_{n}^{m}}{d\varphi} \right|_{j} \exp(-im\lambda_{i}) w_{j}. \end{split}$$

¹⁶この証明は (B.81)の証明と同様である.

まず,

$$u = -\frac{1}{r}\frac{\partial\psi}{\partial\varphi} + \frac{1}{r\cos\varphi}\frac{\partial\chi}{\partial\lambda}$$
(B.82)

より,

$$u_{ij} = \sum_{m,n} \left(-\frac{1}{r} \tilde{\psi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j + \frac{1}{r \cos \varphi_j} im \tilde{\chi}_n^m P_n^m(\sin \varphi_j) \right) \exp(im\lambda_i).$$
(B.83)

である.同様に,

$$v = \frac{1}{r\cos\varphi}\frac{\partial\psi}{\partial\lambda} + \frac{1}{r}\frac{\partial\chi}{\partial\varphi}$$
(B.84)

より,

$$v_{ij} = \sum_{m,n} \left(\frac{1}{r \cos \varphi_j} i m \tilde{\psi}_n^m P_n^m(\sin \varphi_j) + \frac{1}{r} \tilde{\chi}_n^m \left. \frac{dP_n^m}{d\varphi} \right|_j \right) \exp(im\lambda_i).$$
(B.85)

である.

B.7 スペクトルの係数同士の関係

ここではスペクトルの係数同士の便利な公式を挙げておく. $g=rac{\partial f}{\partial \lambda}$ の時

$$\tilde{g}_n^m = im\tilde{f}_n^m. \tag{B.86}$$

 $h =
abla_H^2 f$ の時

$$\tilde{h}_{n}^{m} = -\frac{n(n+1)}{r^{2}}\tilde{f}_{n}^{m}.$$
(B.87)

(B.86) については「スペクトルの係数と格子点値とのやり取り」に証明を示した. ここでは、(B.87) について証明しておく.

微分評価の定義より,

$$h_{ij} = \left(\nabla_H^2 \sum_{m,n} \tilde{f}_n^m Y_n^m \right) \bigg|_{ij} = -\sum_{m,n} \frac{n(n+1)}{r^2} \left. \tilde{f}_n^m Y_n^m \right|_{ij}$$

である.ところで,

$$h_{ij} = \sum_{m,n} \left. \tilde{h}_n^m Y_n^m \right|_{ij}$$

である. この2つの式の右辺に左から $\sum_{i,i} Y_{n'}^{m'*}|_{ij}$ を演算して比較すると,

$$\tilde{f}_{n'}^{m'} = -\frac{n(n+1)}{r^2}\tilde{h}_{n'}^{m'}$$

を得る.

B.8 波数切断

GCM では、物理量を球面調和函数 $P_n^m(\sin \varphi) \exp(im\lambda)$ で展開したり波数空間で 計算するときに、計算資源の都合上、ある一定波数以下の波数のみを考慮して計算 する. そのことを波数切断するという¹⁷.以下ではまず、切断の基礎知識として切 断の仕方・流儀を述べ、ついで、切断における事情を述べた上で切断波数の決め方 を記す.

B.8.1 波数切断の仕方

波数切断の仕方については、東西波数(m)、南北波数(n-m)のそれぞれの切断の 方法にいくつかの流儀がある. 一般によく用いられるものは三角形切断(Triangle) 、平行四辺形切断(Rhomboidal: 偏菱形)と呼ばれるものである. 三角形切断の場 合について計算する波数領域を波数平面上に書くと(B.1)のようになる. 平方四辺 形切断の場合は、(B.2)である.

三角形切断, 平行四辺形切断, という名称は波数平面上 ((*n*, *m*) 平面) での形状による¹⁸.

より一般的な切断方法は五角形切断 ((B.3)) である.

三角形切断、平行四辺形切断はそれぞれ、五角形切断において

¹⁷後述するように,現実的には波数切断を決めると同時に格子点数が決まる.すなわち,以上の理由は格子点数を大きくとれないことの理由でもある.

¹⁸平方四辺形切断には, n の最大値を m の最大値の2倍にしないようなとり方もある.詳しくは 五角形切断に関する脚注参照.

spectral/spectral.tex(spectral/spl-truncation.tex)

図 B.1: 三角形切断の場合の波数領域

図 B.2: 平方四辺形切断の場合の波数領域

図 B.3: 五角形切断の場合の波数領域

- 三角形切断 $J = K = M = N_{tr}$
- 平行四辺形切断 $K = 2N_{tr}, J = M = N_{tr}$

であるような特別な場合である¹⁹.

三角形切断と平行四辺形切断の違いについて、世の中では次のように言われている²⁰.

- 三角形切断の水平分解能は、経度方向のみならず緯度方向にも一定である²¹
 分解能を上げてスケールの細かい波を表現できるようになった場合を考える。物理的にスケールの小さい波には指向性がないことと、水平分解能に方向依存性がないこととは調和的である。
 また、このことは、ある三角形波数切断した球面調和函数により表現される球面上の分布は極の位置を変えても同じ三角形波数切断した球面調和函数により正確に表現されることの言い替えでもある。
- 平行四辺形切断の場合, 各東西波数について同じだけの南北波数をとれる.

B.8.2 切断波数の決め方

ここでは切断波数と南北格子点数の決め方について記す.これらは切断の仕方を決めた後に,使用する計算資源がネックになって決まる.その際,FFTの仕様, aliasingの回避,という2つの数値的な事情を考慮した上で決める必要がある.

FFT の仕様の事情というのは,話は簡単で,東西方向に「格子 ⇔ スペクトル」変 換するために用いる FFT が効率よく動くための格子点数・波数がある²² ことで ある.

一方, aliasing に関する事情は複雑である. ここで扱っているスペクトルモデルでは,格子点でのみ値を計算している. いわゆるスペクトルを使うのは,単に格子点上での水平微分項の評価をする時のみである. その意味で,「微分の評価にのみス

¹⁹単に K = J + M であるものも平方四辺形切断と呼ばれる. だが, 例えば R21 と呼ばれるもの は, K = 42, J = M = 21 のものである.

²⁰気象庁予報部, 1982 の p.47 より.

²¹分解能が緯度方向に変化することについては、平行四辺形切断に限らず、三角形切断以外のどれでも起こる.

²²コード依存性がある.通常,2のべき乗が好ましいとされる.コードによっては,2,3,5のべき乗の積でもよいものもある.
ペクトルを用いるグリッドモデル」と言ってもよい.そのように受け止めると,格 子点値を"正しく"計算することを目指し,また,考慮する波数は厳密にスペクトル の係数と格子との変換を行なうことのできる波数,すなわち変換において情報の落 ちないだけの波数をとらねばならないように思える.ところが実際には,スペクト ルモデル的な配慮 — ある波数以下についてのみ正しく計算し,それ以上の波数に ついては計算しない — により切断波数・格子点数が決められている.また,後述 する理由により情報は (非線形 aliasing のことを考えずとも)必ず落ちてしまうの である²³.

さて、以下では aliasing に関する事情を具体的に述べながら、切断波数に対する格 子点数の決め方を記そう. 球面上に連続分布している物理量を球面調和函数で展 開する. ある波数 M, N(m) 以下 (例えば、T42 ならば M = 42, N = 42) につい ては線形項・非線形項の両方について厳密に計算できるように I, J を決めること を目指す.

M, N を仮に固定したとして、まずは線形項について切断波数以下のスペクトルの 係数のわかっている物理量 A を格子点値に変換しさらにスペクトルの係数に正し くもどすことを考える. A は $-M \le m \le M$, $|m| \le n \le N(m)$ の m, n について は \tilde{A}_n^m がわかっているとする. 格子点値は、 $1 \le i \le I$ 、 $1 \le j \le J$ について

$$A_{ij} \equiv \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \tilde{A}_{n}^{m} P_{n}^{m}(\sin\varphi_{j}) \exp(im\lambda_{i})$$
(B.88)

で与えられる. これらの格子点値から逆に $\tilde{A}_n^m(-M \le m \le M, |m| \le n \le N)$ を計算する. 離散化した系での積分を Gauss の公式, Gauss-Legendre の公式で評価 すれば,

$$\tilde{A}_n^m = \frac{1}{I} \sum_{i=1}^I \sum_{j=1}^J A_{ij} P_n^m(\sin\varphi_j) \exp(-im\lambda_i) w_j$$
(B.89)

²³実際の GCM では格子点値からスペクトルに変換する際に情報は落ちている.したがって,格子-スペクトル-格子という変換を行なうと元にはもどらない.

例えば T42 の場合、自由度は $1 + (2 \times 1 + 1) + \dots + (2 \times 42 + 1) = 43^2 = 1849$ に対して格子点数 は $128 \times 64 = 8192$ である. R21 の場合も、自由度は $(2 \times 21 + 1) \times (21 + 1) = 946$ に対して、格子 点数は $64 \times 64 = 4096$ である. すなわち、3/4 以上の情報は格子点値からスペクトルに変換すると きに落ちている.

工夫すれば情報が落ちないうまい方法があるかも知れないが,今のところ見つけていないし多分見 つからない.

もちろん、スペクトル - 格子 - スペクトルという変換では元にもどる(ように決めている).

である.ここで, w_j は φ_j における重みである. A_{ij} の定義を代入すれば,

$$\tilde{A}_{n}^{m} = \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} P_{n'}^{m'}(\sin\varphi_{j}) \exp(im'\lambda) \right) P_{n}^{m}(\sin\varphi_{j}) \exp(-im\lambda_{i}) w_{j}$$
$$= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{A}_{n'}^{m'} \sum_{i=1}^{I} \exp(i(m'-m)\lambda) \sum_{j=1}^{J} P_{n}^{m}(\sin\varphi_{j}) P_{n'}^{m'}(\sin\varphi_{j}) w_{j}$$
(B.90)

となる. この計算が \tilde{A}_n^m を正しく評価している (すなわち元にもどる) ための I, Jの条件は, $-M \le m \le M$, $|m| \le n \le N$ を満たす m, n について

$$\sum_{i=1}^{I} \exp(i(m'-m)\lambda) = I\delta_{mm'},$$
(B.91)

$$\sum_{j=1}^{J} P_n^m(\sin\varphi_j) P_{n'}^m(\sin\varphi_j) w_j = \delta_{nn'}$$
(B.92)

が成り立つことである. 三角関数の和による評価が正しいための条件は、ここに 登場する波数 |m' - m| が最大で 2M の値をとるので、Gauss の公式の適用条件 より、格子点数 I が $I \ge 2M + 1$ を満たすことである. Legendre 函数の積の和 による評価が正しいための条件は、ここに登場する計算が n + n' 次の多項式²⁴ の 評価であることから、Gauss - Legendre の公式の適用条件より、格子点数 J が $2J - 1 \ge \max[n + n'] = 2\max[N]$ を満たすことである. ここで、 $\max[n + n']$ は n + n' の最大値を、 $\max[N]$ は N の最大値を表す.

ちなみに、格子点値からスペクトルの係数に変換し格子点値にもどすという立場か らすれば、この Gauss-Legendre の公式の適用条件というのが情報を落とさずには 済まない理由である²⁵.このことを以下に述べる.情報を落とさずに格子点値をス ペクトルの係数に変換し格子点値にもどすには、あらゆる東西波数について南北方 向の格子点数 *J* と同じだけの個数の Legendre 函数が必要である.東西波数 *m* の 場合、登場する Legendre 陪函数の *n* は *n* = $|m|, |m| + 1, \dots, |m| + J - 1$ である. *P*^m_n*P*^m_{n'} の次数は *n* + *n'* であるから、最大で 2J + 2|m| - 2 である. これが 2J - 1

spectral/spectral.tex(spectral/spl-truncation.tex)

²⁴ここで、三角関数の和が $I\delta_{mm'}$ となることを用いた. 一般には (m, m') の偶奇が一致しない場合には) $P_n^m P_{n'}^{m'}$ は多項式にならない.

 $^{^{25}}$ Gauss の公式の適用条件と情報欠落との関係についてコメントしておく. 格子点数 *I* が奇数の 場合には、スペクトルで同じ情報量を持つためには波数 $\frac{I-1}{2}$ までを考慮すればよいので、情報は欠 落しないことは明らかである. 一方、*I* が偶数の場合には、情報は欠落させないためには波数 $\frac{I}{2}$ が 必要であるが、この波数は Gauss の公式の適用条件を満たさない. しかしこの場合にも、(私は根拠 を調べていないが、少なくとも) 経験的には FFT および 逆 FFT によって格子 - スペクトル - 格 子変換によって情報が落ちないことが知られている.

以下になるのは m = 0 の時のみである. $m \neq 0$ の場合は高次の Legendre 函数は 計算してはならない. つまり情報を落とさざるをえない²⁶.

改めて *M*,*N* を固定するという立場にもどって、切断波数以下のスペクトルの係数のわかっている物理量 *B*,*C* の積からそれらの格子点値を用いて *B* と *C* との積(非線形項) *A* のスペクトルの係数を正しく求めるための *I*,*J* の条件を考える.

$$A = BC, \tag{B.93}$$

$$B = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{B}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m}(\sin\varphi), \tag{B.94}$$

$$C = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \left(\tilde{C}_{n}^{m} \exp(im\lambda) \right) P_{n}^{m}(\sin\varphi)$$
(B.95)

なる物理量 A, B, C があるとする²⁷ . B, C の $-M \le m \le M$, $|m| \le n \le N$ にお けるスペクトルの係数 $\tilde{B}_n^m, \tilde{C}_n^m$ を用いて A のスペクトルの係数 \tilde{A}_n^m を $0 \le m \le M$, $|m| \le n \le N$ については正しく計算することを考える.

$$\begin{split} \tilde{A}_{n}^{m} &\equiv \widetilde{(BC)}_{n}^{m} \\ &= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} B_{ij} C_{ij} P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(\sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \tilde{B}_{n'}^{m'} \exp(im'\lambda_{i}) P_{n''}^{m'} (\sin \varphi_{j}) \right) \\ &\times \left(\sum_{m''=-M}^{M} \sum_{n''=|m''|}^{N} \tilde{C}_{n''}^{m''} \exp(im''\lambda_{i}) P_{n''}^{m''} (\sin \varphi_{j}) \right) P_{n}^{m} (\sin \varphi_{j}) \exp(-im\lambda_{i}) w_{j} \\ &= \frac{1}{I} \sum_{m'=-M}^{M} \sum_{n'=|m'|}^{N} \sum_{m''=-M}^{M} \sum_{n''=|m''|}^{N} \tilde{B}_{n'}^{m'} \tilde{C}_{n''}^{m''} \\ &\times \sum_{i=1}^{I} \exp(i(m'+m''-m)\lambda_{i}) \sum_{j=1}^{J} P_{n'}^{m'} (\sin \varphi_{j}) P_{n''}^{m'} (\sin \varphi_{j}) P_{n}^{m} (\sin \varphi_{j}) w_{j}. \end{split}$$
(B.96)

この計算が \tilde{A}_n^m を $0 \le m \le M$, $|m| \le n \le N$ について正しく評価しているため ²⁶この事情により, 非線形項の場合を考えてさらに著しく落とすことが必要になることが次節からわかる.

 ${}^{27}A, B, C$ とも実数である. すなわち, $\tilde{B}_n^m = \tilde{B}_n^{m*}, etc.$ となっている.

の, I, J の条件を線形項の場合と同様に考えると, 格子点数 I が $I \ge 3M + 1$ を, 格子点数 J が $2J - 1 \ge \max[n + n' + n''] = 3\max[N]$ を満たすことである. ここ で, $\max[n + n' + n'']$ は n + n' + n'' の最大値を, $\max[N]$ は N の最大値を表す.

再び格子点値からスペクトルの係数に変換し格子点値にもどすという立場からす れば、これらの I, J に関する条件から、南北成分のみならず、東西成分についても 変換によって情報が落ちてしまうことがわかる.

これまでに述べた *M*, *N* を固定したときに格子点数 *I*, *J* がとらねばならない個数 について,線形項・非線形項の2つの場合のうち条件が厳しいのは,明らかに非線 形項の場合である.この条件以下の格子点数しかとらない場合には,aliasing をお こすことになる.

以上, FFT, aliasing という2つの事情を考えて格子点数と切断波数とは同時に決められる.具体的手順は以下のとおりである.

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ. それを東西格子点数 I とする.
- 3. 東西方向の波数の最大値 M を $M = \left[\frac{I-1}{3}\right]$ にする. ただし[] はそれを越 えない最大の整数を表す記号である.
- 4. 最大全波数 N_{max} を決める. 三角形切断ならば $N_{\text{max}} = M$, 平行四辺形切断 ならば $N_{\text{max}} = 2M$ である.
- 5. 南北方向の格子点数 $J \in J \ge \frac{3N_{\max}+1}{2}$ を満たす数に選ぶ. (dcpam5 では偶数でなくてはならない.)

例えば、T42 の場合には M = 42, N = 42, 東西格子点数 *I* が 128, 南北格子点数 *J* が 64 である. R21 の場合には M = 21, N = 42, 東西格子点数 *I* が 64, 南北格子点数 *J* が 64 である.

参考までに、線形モデルの場合について決め方を示しておく、

- 1. 波数切断の仕方を決める.
- 2. FFT のかけやすい数を選ぶ. それを東西格子点数 I とする.

- 3. 東西方向の波数の最大値 M を $M = \left\lfloor \frac{I}{2} \right\rfloor$ にする. ただし [] はそれを越えな い最大の整数を表す記号である²⁸.
- 4. 最大全波数 N_{max} を決める. 三角形切断ならば $N_{\text{max}} = M$, 平行四辺形切断 ならば $N_{\text{max}} = 2M$ である.
- 5. 南北方向の格子点数 $J \in J \geq \frac{2N_{\max}+1}{2}$ を満たす数に選ぶ.

例えば、三角形切断の場合には、I = 128とすると、M = 64、N = 64、J = 65となる、つまり T64 では I = 128、J = 65である、平方四辺形切断の場合には、I = 64とすると、M = 32、N = 64、 $J \ge 65$ となる、つまり R32 では I = 64、J = 65でよい²⁹、

B.9 スペクトルモデルと差分モデル

世の中の多くの GCM の離散化の方法としては,鉛直方向については必ずレベル と称する差分による離散化を行なうが,水平方向については,差分する方法(この 方法を用いるモデルをグリッドモデルという)と球面調和函数で展開してその係 数の時間変化を計算する方法(力学過程において³⁰ この方法を用いるモデルをス ペクトルモデルという)とが用いられる.その二つの方法については一長一短が ある.ここでは双方の特徴について列挙しておく³¹.

- スペクトルモデルには水平空間差分の誤差がない.これが位相の遅れがない ことに通じる(らしい).
- もっとも、グリッド間隔 1.875 度(波数 63 相当)以上では、格子点モデルでの差分誤差も十分小さくなり、ほぼ等しい性能といえる.
- 極は特異点であり、単純には扱えない³².スペクトルモデルではうまく関数

³¹出典は、スペクトル法による数値予報(その原理と実際)(1.6)

³²問題点その1.グリッドモデルでは緯度経度図で等間隔に格子点をとると,極でも CFL を満たすようにするために,時間差分を細かくしなければならない.他は未調査.

 $^{^{28}}$ ここで, I が偶数のときについては Gauss の公式の適用条件を越えて最大波数 $\frac{I}{2}$ まで計算で きるという知識を用いた.

²⁹これらの場合でも,南北方向の細かい情報は格子 - スペクトル - 格子変換によって落ちていることに注意せよ.

³⁰adjustment 等の意味をなど考えると、特に物理過程においては、格子点で考える方が物理的に 当然であるように思う. そのためであろうか、スペクトルモデルである東大版 GCM でも物理過程 を格子点で計算している. 他のスペクトルモデルについてもそうであるかどうかは未調査.

系を選ぶことで困難を回避できる.格子点法では数値的な技巧が必要である (らしい).

- 保存量を作ることは出力結果の解釈に使いやすいという物理的な理由と、数値的な発散をおさえやすいという数値的な理由とにより奨励される.格子点モデルの場合、技巧を用いることで保存を維持できる.スペクトルモデルの場合、さほどの技巧を用いることなく保存を維持できる.
- 格子点モデルには非線形不安定がある(aliasing).
- スペクトルモデルの方が、空間微分を含まないだけプログラムが簡単になる、
- スペクトル法はグリッド法よりも境界条件の点で柔軟でない.
- スペクトルモデルはグリッドモデルに比べて水蒸気等の局地的な現象の表現には適さないといわれる。
 もっとも、グリッドのあらい格子点モデルではスペクトルモデルに比べてさして優れているとはいえない。
- スペクトルモデルでは一点の影響が(本来は影響が及ばない)遠く離れた点
 にも与えられてしまう.
- FFT を用いると、少なくともある程度の解像度までは、スペクトルモデルの 方が格子点モデルよりも速い(らしい).

ちなみに、dcpam5はスペクトルモデルに分類される。

B.10 参考文献

- 気象庁予報部, 1982:スペクトル法による数値予報(その原理と実際).気象庁, 111pp.
- 森口, 宇田川, 一松編 ,1956 : 岩波数学公式 I . 岩波書店, 318pp.
- 森口, 宇田川, 一松編, 1960: 岩波数学公式 III. 岩波書店, 310pp.
- 一松 信, 1982:数值解析. 朝倉書店, 163pp.
- 森 正武, 1984:数值解析法. 朝倉書店, 202pp.
- 寺沢寛一,1983:自然科学者のための数学概論(増訂版).岩波書店,711pp.

付 録C 使用上の注意とライセンス 規定

CREDITS¹ を参照ください.

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/CREDITS$