Annular Modes and the Role of the Stratosphere

Alan Plumb (+ Mike Ring, Cegeon Chan, Gang Chen & Daniela Domeisen) *M. I. T.*

Annular Modes

- Leading patterns of variability in extratropics of each hemisphere (EOFs: leading eigenvectors of covariance matrix)
- Strongest in winter but visible yearround in troposphere; present in stratosphere during "active seasons"

[Thompson and Wallace, 2000]

Regressions on the annular modes

$$\phi_{AM}(\lambda, \varphi, z, t) = P_{AM}(t) E_{AM}(\lambda, \varphi, t)$$

$$\downarrow^{/}_{AM \text{ index}} AM \text{ structure}$$

Northern/southern annular mode indices: distribution

Eddy fluxes drive the mean flow changes

[Lorenz & Hartmann, *J. Atmos. Sci* (2001); *J. Clim* (2003)]

FIG. 2. (a) First principal component of Atlantic sector mean sea level pressure, with contour interval 1 hPa (..., -0.5, 0.5, 1.5, ...). It explains 48% of the variance over the Atlantic sector and 24% over the full hemisphere. The solid line in the graph is its standardized time series, the NAO index, and the dashed line is the NAO_t index. (b) First principal component of the potential vorticity at the $\theta = 500$ K isentropic surface, with contour interval 1 PVU. It explains 34% of the variance. The solid line in the graph is its standardized time series, the PV500 index, and the dashed line is the PV500 index.

FIG. 7. (solid) Correlation between the daily NAO and PV500 indices as a function of the lag (in days). Positive lag means NAO leading PV500. (dashed) Lagged autocorrelation for the daily NAO index. (dotted) Lagged autocorrelation for the daily PV500 index.

Projection onto annular mode index at each height:

Composites with respect to 10 hPa

[Baldwin & Dunkerton, Science, 2001]

Fig. 3. December-May trends (left) and the contribution of the SAM to the trends (right). Top, 22-year (1979–2000) linear trends in 500-hPa geopotential height. Bottom: 32-year (1969–2000) linear trends in surface temperature and 22-year (1979–2000) linear trends in 925-hPa winds. Shading is drawn at 10 m per 30 years for 500-hPa height and at increments of 0.5 K per 30 years

Response to altered stratospheric radiative state [Kushner & Polvani, *J Clim*, 2004]

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f} \,.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$.

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f} \,.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$.

 \rightarrow but we don't know what **A** is: so how do we find out?

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f} \,.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$. With no external forcing:

Unknown **A**, stochastic $\mathbf{f} = \epsilon(\mathbf{r}, t)$

 $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{W}^T \quad ;$ $\mathbf{V} \mathbf{W}^T = \mathbf{I} = \mathbf{W}^T \mathbf{V}$

$$\frac{\partial}{\partial t} \mathbf{W}^T \mathbf{x} + \mathbf{\Lambda} \mathbf{W}^T \mathbf{x} = \mathbf{W}^T \boldsymbol{\epsilon}$$

 $\mathbf{C}_{\tau} = \left\langle \mathbf{x}(\mathbf{t} + \tau)\mathbf{x}^{T}(t) \right\rangle$ $\mathbf{G}_{\tau} = \mathbf{C}_{\tau}\mathbf{C}_{0}^{-1}$

The vectors **V** are the *principal oscillation patterns* (POPs)

[*e.g.*, Penland 2002]

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

 $\frac{\partial \mathbf{X}}{\partial t} + \mathbf{A}\mathbf{X} = \mathbf{f}$.

FIG. 7. (solid) Correlation between the daily NAO and PV500 indices as a function of the lag (in days). Positive lag means NAO leading PV500. (dashed) Lagged autocorrelation for the daily NAO index. (dotted) Lagged autocorrelation for the daily PV500 index.

Baldwin and Dunkerton, Science (2001)

With no external forcing:

Unknown **A**, stochastic $\mathbf{f} = \boldsymbol{\varepsilon}(\mathbf{r}, t)$

 $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{W}^T \quad ;$ $\mathbf{V} \mathbf{W}^T = \mathbf{I} = \mathbf{W}^T \mathbf{V}$

$$\frac{\partial}{\partial t} \mathbf{W}^T \mathbf{x} + \mathbf{\Lambda} \mathbf{W}^T \mathbf{x} = \mathbf{W}^T \boldsymbol{\epsilon}$$

$$\mathbf{C}_{\tau} = \left\langle \mathbf{x}(\mathbf{t} + \boldsymbol{\tau})\mathbf{x}^{T}(t) \right\rangle$$
$$\mathbf{G}_{\tau} = \mathbf{C}_{\tau}\mathbf{C}_{0}^{-1}$$

$$\mathbf{\bar{C}}_{\tau} = \langle \mathbf{W}^T \mathbf{x}(t+\tau) \mathbf{x}(t) \mathbf{W} \rangle$$
$$\mathbf{\bar{C}}_{\tau} = \exp(-\mathbf{\Lambda}\tau) \mathbf{\bar{C}}_0$$

→ Lag covariance of each principal component decays exponentially with decorrelation time $\tau = \Lambda^{-1}$

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f} \,.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$. Steady response to steady forcing:

 $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{W}^T$ $\mathbf{\Lambda} \mathbf{W}^T \mathbf{x} = \mathbf{W}^T f$

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f} \,.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$. Steady response to steady forcing:

Application to forced barotropic model [Gritsun & Branstator *J. Atmos. Sci.*, 2007]

FIG. 3. Time-averaged anomalous response of (left) AGCM and (right) FDT operator to sinusoidal 2.5°C day⁻¹ forcing at (top four) (0°, 135°E) and (bottom four) (0°, 90°W). Fields shown are $\psi_{0.336}$ and $T_{0.991}$ as indicated. Contour intervals are 5×10^5 m² s⁻¹ for streamfunction and 0.2°C for temperature.

Model Setup

- GFDL dry dynamical core; no geography
- T30 resolution
- Linear radiation and friction schemes

$$\frac{\partial \mathbf{u}}{\partial t} + \dots = \mathbf{F} - \gamma \mathbf{u} + \mathbf{v} \nabla^6 \mathbf{u}$$
$$\frac{\partial T}{\partial t} + \dots = \alpha (T_e - T)$$

- Held-Suarez-like reference temperature profile but modified for perpetual solstitial conditions
- Friction twice the value used by Held and Suarez (1994) to reduce decorrelation times

Troposphere "dynamical core" model with Held-Suarezlike forcing (*Ring & Plumb 2007*)

Mean and variability of control run

Behavior of a simplified GCM (no longitudinal variations in external conditions)

(Ring & Plumb, J Atmos Sci, 2007)

1000 -80

-60

-40

-20

0 Latitude (degrees)

20

40

60

80

+1σ

-1σ

(Ring & Plumb, J Atmos Sci, 2007)

Responses to Mechanical Forcings

Ring and Plumb (2007)

Hypothesis: response in each EOF U_n is proportional to projection of forcing onto U_n

Ring and Plumb (2007)

Reference Temperature Changes Confined to Poleward of Jet

Ring and Plumb (2007)

Wind Changes Resulting From Poleward Side T_{ref} Changes

Direct Response to Forcing

4 K Warming

Response to Forcing Including Eddy Flux Changes

4 K Warming

4 K Cooling

Responses to Poleward Side Thermal Forcings

Ring and Plumb (2007)

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f}.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$. Steady response to steady forcing:

Governing eqs of system

Linearize about unforced time-mean state $[U,V,\Omega,\Theta](\phi,p)$ Anomalies $[u,v,\omega,T, F_u,F_T](\phi,p,t)$

$$u_t + (\mathbf{V} \cdot \nabla)u + (\mathbf{v} \cdot \nabla)U - fv = -\nabla \cdot \mathbf{F}_u - \lambda u + h$$

$$T_t + (\mathbf{V} \cdot \nabla)T - \frac{\kappa}{p}\Omega T + (\mathbf{v} \cdot \nabla)\Theta - \frac{\kappa}{p}\omega\Theta = -\nabla \cdot \mathbf{F}_T - \alpha T + q$$

Assume anomalous eddy fluxes depend linearly on anomalous *u* (and neglect time lags) + stochastic term:

$$\nabla \cdot \mathbf{F}_u = \mathbf{E}_u u + \boldsymbol{\epsilon}_u ; \ \nabla \cdot \mathbf{F}_T = \mathbf{E}_T u + \boldsymbol{\epsilon}_T$$

$$\longrightarrow$$
 $\mathbf{x}_t + \mathbf{C}\mathbf{x} = \mathbf{g} + \boldsymbol{\epsilon}$

Governing eqs of system

Linearize about unforced time-mean state $[U,V,\Omega,\Theta](\phi,p)$ Anomalies $[u,v,\omega,T, F_u,F_T](\phi,p,t)$

$$u_t + (\mathbf{V} \cdot \nabla)u + (\mathbf{v} \cdot \nabla)U - fv = -\nabla \cdot \mathbf{F}_u - \lambda u + h$$

$$T_t + (\mathbf{V} \cdot \nabla)T - \frac{\kappa}{p}\Omega T + (\mathbf{v} \cdot \nabla)\Theta - \frac{\kappa}{p}\omega\Theta = -\nabla \cdot \mathbf{F}_T - \alpha T + q$$

Nonlinear balance:

$$ap^{-1}R\cos^2\varphi T_{\varphi} = 2\sin\varphi \left[u(U+\Omega a\cos\varphi)\right]_p$$

Neglect advection of static stability anomalies

$$\rightarrow$$
 $u_t + Au = f + \epsilon$

where

$$f = h - \mathrm{HL}^{-1}\left(\frac{1}{a}\frac{\partial q}{\partial \varphi} - \frac{2\sin\varphi}{a^{3}\cos^{3}\varphi}\frac{p}{R}\frac{\partial}{\partial p}(hM)\right)$$

= Kuo-Eliassen response

Effective Torques: Mechanical Forcing

Ring and Plumb (2007)

Effective Torques: Thermal Forcing

Ring and Plumb (2007)

$$\frac{\partial \mathbf{X}}{\partial t} + \mathcal{L}(\mathbf{X}) + \mathcal{N}(\mathbf{X}) = \mathbf{F}$$

Linearize about climatological state:

$$\frac{\partial \mathbf{x}}{\partial t} + \mathbf{A}\mathbf{x} = \mathbf{f}.$$

Steady forcing: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{f}$. Steady response to steady forcing:

Troposphere "dynamical core" model with Held-Suarezlike forcing (*Ring & Plumb 2007*)

Mean and variability of control run

POP Spatial Patterns 8 EOFs retained – 10 day lag

Ring and Plumb (2007)

circles indicate mechanically forced trials; squares thermally forced trials

Response to altered stratospheric radiative state [Kushner & Polvani 2004]

Figure 2: (a)-(c) Climatological zonally-averaged zonal winds for experiment 1a-1c. (d) Difference between (c) and (a).

Chan & Plumb (2009)

Figure 4: (a) Climatological zonally-averaged zonal winds for exp. 2a. (b) As in (a) but for exp. 2b. (c) Difference between (b) and (a). (d) As in (a) but for exp. 3a. (e) As in (a) but for exp. 3b. (f) Difference between (e) and (d). Contours are labelled every 5 ms^{-1} for (a), (b), (d) and (e), with shading for values greater than 40 ms^{-1} . For (c) and (f), contours are labelled every 2 ms^{-1} for values less than 20 ms^{-1} and are shaded and labelled every 10 ms^{-1} . Negative values are gray and dashed.

Chan & Plumb (2009)

Chan & Plumb (2009)

$$\tau = 262 \text{ d.}$$

Chan & Plumb (2009)

Chan & Plumb (2009)

FIG. 3. A relative histogram of the latitudinal location of the maximum daily averaged near-surface zonally averaged zonal winds for all model runs listed in Table 1. Histograms in bold are model runs for which the decorrelation time for the leading principal component is greater than 200 days. Within each column, the same stratospheric equilibrium temperature profile is used, with polar vortex intensities (γ) increasing to the right. Within each row, the same tropospheric equilibrium temperature profile is used, with the magnitude of the equator to pole temperature difference increasing downward.

not pressure-weighted

pressure-weighted

POP 2 V real [Domeisen] POP 1 V real 0.2 0.2 0.1 10 0.1 pressure [hPa] 10 pressure [hPa] 0 50 0 50 climatology of zonal mean zonal wind [m/s] 100 100 80 200 -0.1 200 -0.1 500 500 10 7 60 800 800 -0.2 -0.2 -60 -50 -40 -30 latitude -70 -60 -50 -40 -30 latitude -70 40 50 100 POP 2 W real POP 1 W real 20 0.4 200 0 500 1 800 0.2 10 -60 -50 -40 -30 latitude -70 pressure [hPa] pressure [hPa] 0.5 //11 0 0 1111 50 50 1111 100 100 -0.5 200 -0.2 200 -1 500 500 800 -0.4 800 -70 -60 -50 -40 -30 latitude -70 -60 -50 -40 -30 latitude

POPs

Conclusions

$$x_n = \lambda_n^{-1} g_n = \tau_n g_n$$

- FDT works *reasonably* well as a predictor of system response
- Response depends on projected *effective* forcing **and** on autocorrelation time τ of "natural" fluctuations
- Model simulations need to have good EOFs (or POPs) and their autocorrelation times
- POP analysis suggests distinct stratospheric and tropospheric modes
- Hard to determine robust adjoint POPs for stratosphere-troposphere model to do accurate prediction from FDT
- Response to tropical forcing does not fit the pattern strong Hadley circulation response

observed

calculated

 U_t

Chan & Plumb (2009)

FIG. 5. The autocorrelation functions of (top) the zonal index and (middle) eddy forcing, and (bottom) their cross-correlations for different surface frictional damping time scales. The left column shows the correlations for z and m, and the right column shows the correlations for \tilde{z} and \tilde{m} where the feedback is eliminated. (Chen & Plumb, 2009)

FIG. 7. The time scale of the zonal index damping D, eddy feedback B^{-1} , and the zonal index decorrelation τ as a function of surface friction. The error bars denote the difference of the two hemispheres. Note that the inverse of the eddy feedback is plotted.

Chan & Plumb (2009)

$$\frac{\partial z}{\partial t} = m - \tau^{-1} z$$

$$C_{zz}(\Delta t) = \int_{-\infty}^{0} \int_{-\infty}^{0} C_{mm} (\Delta t + r - s) \exp(\frac{r + s}{\tau}) \, ds \, dr$$

FIG. 6. The autocorrelation function of the zonal index for different surface frictional damping time scales, but the autocorrelation of \tilde{m} is assumed of the form of Eq. (10), and is shown in the gray solid line. We use the best fit to the model result on the left, and remove the sinusoidal part and keep the same eddy decorrelation time scale on the right. The lines are symbolized in the same way as in Fig. 5. (Chen & Plumb, 2009)

References

- Baldwin, M. P. and Dunkerton, T. J., 2001: Stratospheric harbingers of anomalous weather regimes, Science 244, 581-584
- Chan, C. J. and Plumb, R. A., 2009: The Response to Stratospheric Forcing and Its Dependence on the State of the Troposphere, J. Atmos. Sci., 66, 2107-2115
- Chen, G., Plumb, R. A., 2009: Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model, J. Atmos. Sci., 66, 3707-3720
- Gritsun, A. and Branstator, G., 2007: Climate Response Using a Three-Dimensional Operator Based on the Fluctuation--Dissipation Theorem, J. Atmos. Sci., 64, 2558-2575.
- Kushner, P. J., Held, I. M., Delworth, T. L., 2001: Southern Hemisphere Atmospheric Circulation Response to Global Warming, J. Climate, 14, 2238-2249
- Kushner, P. J., and L. M. Polvani, 2004: Stratosphere-troposphere coupling in a relatively simple AGCM: the role of eddies, J. Climate, 17, 629-639.

References

- Lorenz, David J., Dennis L. Hartmann, 2001: Eddy-Zonal Flow Feedback in the Southern Hemisphere, J. Atmos. Sci., 58, 3312-3327
- Lorenz, David J., Dennis L. Hartmann, 2003: Eddy-Zonal Flow Feedback in the Northern Hemisphere Winter, J. Climate, 16 1212-1227
- Ring, M. J. and Plumb, R. A., 2007: Forced Annular Mode Patterns in a Simple Atmospheric General Circulation Model, J. Atmos. Sci., 64, 3611-3626
- Ring, M. J. and Plumb, R. A., 2008: The Response of a Simplified GCM to Axisymmetric Forcings: Applicability of the Fluctuation--Dissipation Theorem, J. Atmos. Sci., 65:12, 3880-3898
- Thompson, D. W. J. and S. Solomon. 2002: Interpretation of recent Southern Hemisphere climate change, Science, 296, 895-899
- Thompson, D. W. J. and Furtado, J. C., Shepherd, T. G., 2006: On the Tropospheric Response to Anomalous Stratospheric Wave Drag and Radiative Heating, J. Atmos. Sci., 63, 2616-2629.
- Thompson, D. W. J., John M. Wallace, Gabriele C. Hegerl, 2000: Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability, J. Climate, 13, 1000-1016