

太陽系外巨大惑星(大気)の今とこれから

据 安範 国立天文台 理論研究部

2014年1月6-7日 系外惑星大気ワークショップ 2014/惑星大気研究会@国立天文台

Part I Hot Jupiters

太陽系近傍の系外惑星の軌道分布

太陽系近傍の系外巨大ガス惑星

中心星近傍の**ガス惑星**(≦ 0.1AU) AFGKM型星周りでの**存在頻度:数%** (a) **周期3日**付近にpile-up → 潮汐固定の状態 (b) 0.1-1AUの領域では欠乏

① Type I 型移動

(Goldreich & Tremaine,1980 Ward,1986; Tanaka *et al*.2002)

②惑星同士の重力散乱

(e.g. Rasio & Ford,1996;Weidenschilling & Marzari,1996; Chatterjee *et al.* 2007;Nagasawa *et al.*2008)

Transit観測から見る惑星の姿

Secondary Eclipseからhot Jupiterの大気構造

- ・平衡温度(~1000-2000K)
- Bond アルベド(< 0.3と低い?)
- ・温度の逆転層の有無(温度分布)
- ・昼側→夜側への熱の再分配:非効率?(~10%, 30%, 60%?)
- ・全球の温度マップ
- ・H2Oなど分子種の存在, 混合比率

(例) WASP-12b, WASP-33b, WASP-19b(?), WASP-18b, HAT-P-1b, CoRoT-1b,2b HAT-P-7b, HD189733b, WASP-4b,TrES-2, TrES-3, WASP-3b, HAT-P-11b, OGLE-TR-113b, KELT-1b, Kepler-17b, HD209458b 他

hot Jupiterのアルベドは低い?

潮汐固定された HJの昼夜コントラスト = 反射に起因すると仮定

hot Jupiterの雲形成

hot Jupiterの雲は Mineral cloud

※ Kepler-7b大気に (MgSiO3)雲が存在する?(Demory et al.2013)

HD189733b大気中の雲 or haze?

大気中のアルカリ金属と雲の存在

Haze Chemistryと大気の光化学

hot Jupiterの温度構造と熱再分配

潮汐固定されたhot Jupiter <u>
昼側</u>→夜側への熱再分配は効率的か?

HD189733b

hot Jupiter大気の温度構造と逆転層

逆転層の存在 --- 気相のTiO, VO (>1800K)による可視光の吸収 ※ VO > TiO → TiOのfeatureが隠される? 豊富なTiO or 巨視的なmixingが必要? (Spiegel *et al.*2009) S, HSのような硫化物によるUV吸収? (Zahnle *et al.*2009)

if not : 低温下で凝縮 (cold-trap) + 沈殿 (Ti, V or 凝縮物) 強烈なUV照射による破壊 (Knutson *et al.*2010)

hot Jupiterの温度構造と逆転層の存在

hot Jupiter上層大気中のTiO/VO

hot Jupiterの温度構造と組成の縮退問題

(1) **可視光**領域:**TiO/VO**吸収の有無 (2) ~**600nm**付近:**Ca**の吸収

→ 逆転層の存在と組成(形成環境)の縮退を紐解く

Primary Eclipseから惑星大気の組成

hot Jupiter大気中に**アルカリ金属**の検出 (Na D線 : 589, 589.6nm)

HD209458b	Na, Ca	(e.g. Charbonneau+02;Snellen+08)
HD189733b	Na (地上)	(Redfield+08)
WASP-17b	Na (地上)	(Wood+11;Zhou+12)
WASP-12b	Na (HST)	(Fossati+10) ※ 他にMgII等(?)
XO-2b	Na, K (地上)	(Sing+11;12)
HAT-P-1b	Na	(Nikolov+13)

Primary Eclipseから惑星質量の制限

(cf) scale heightとtransit半径から惑星質量へ

$$H = \frac{kT}{\mu g} \iff M_{\rm p} = \frac{kTR_{\rm p}^2}{\mu GH} \longrightarrow M_{\rm p} = -\frac{4kTR_{\rm p}^2(\lambda)}{\mu G\frac{dR_{\rm p}(\lambda)}{dln\lambda}}$$

(例) Rayleigh散乱: $\sigma(\lambda) = \sigma_0 \left(\frac{\lambda}{\lambda_0}\right)^{-4} \longrightarrow M_{\rm p} = -\frac{4kTR_{\rm p}^2(\lambda)}{\mu G\frac{dR_{\rm p}(\lambda)}{dln\lambda}}$ de Wit & Seager (2013, Science)

hot Jupiterの大気組成:揮発性成分

HD189733b	H ₂ O (Tinetti+07;Beaulieu+08;Swain+09) CH4, CO, CO ₂ (Swain+08;09)
51Peg.b	H ₂ O, CO (?) (Brogi+13)

Doppler Tomographyによる分子検出

揮発性分子のC/O比と惑星の形成環境

揮発性分子のC/O比と惑星の形成環境

Hot Jupiterの起源:複数ガス惑星の軌道不安定

Hot Jupiterの起源: 自転軸傾斜角と外側の惑星

直接撮像で発見された遠方ガス惑星の大気

HR8799:4つのガス惑星(5-10木星質量)

直接撮像されたガス惑星の雲の有無と褐色矮星

直接撮像されたガス惑星の雲の有無と褐色矮星

これまでに発見された Transit 惑星

異常膨張した短周期ガス惑星

hot Jupiter の異常半径と熱源

hot Jupiterの大気:対流圏界面と冷却率

(Rauscher & Showman, 2013)

^oressure [bar]

恒星からのXUVと系外ガス惑星の大気散逸

4例のみ (すべてUV観測 by HST)

HD209458b	HI Lyα, OI, CII, Si III (Vidal-Madjar+03;04;08; Ballester+07;Linsky+10)	
HD189733b	HI Lyα, Si III, N V (Lecavelier des Estang+10;Bourrier+13)	
55 Cnc.b	HI Ly α (Ehrenreich+12)	
WASP-12b	Mg II (NUVA,B,C~2500-2800Å) (Fossati+10)	

Hubble宇宙望遠鏡(HST STIS)

短周期惑星の質量損失:熱的/非熱的過程

短周期惑星の質量損失:熱的/非熱的過程

エネルギー律速な**流体力学的散逸** $\dot{M} = \epsilon \frac{3F_{\rm XUV}(t)}{4G\bar{\rho}K_{\rm tide}}$ (e.g. Yelle,2008)

(Schneiter+07) 観測者 M1 M2 M3

M4

UV観測から探る系外巨大惑星の磁場と大気散逸

これまでに発見された Transit 惑星

Part II Super-Earths と hot Neptunes

Super-Earth, そして Sub-Earthの時代へ

短周期 Super-Earthの起源

天体同士の巨大衝突
 (初期の)内側領域の
 (初期の)内側領域の

【Type】惑星移動(Goldreich & Tremaine,1980 Ward,1986; Tanaka et al.2002)

発見された 高密度・低密度なSuper-Earth

太陽型

Kepler-11

 $(0.95 M_{\odot})$

 $13.5 M_{\oplus}$

0.1AU

 $4.3M_{\oplus}$

 $6.1 M_{\oplus}$

惑星質量 (M⊕)

 $8.4M_{\oplus}$

0.2AU

 $2.3M_{\oplus}$

GJ436b

H₂O 100%

Fe

25

30

CoRoT-7b

発見された短周期 Super-Earth (0.5AU以内)

大気スペクトルから「惑星の特徴付け」

低温度星とは...

低温度星とは? ※ TiO, CaH (VO)の吸収線 --- M型星と分類 0.08倍-0.5(0.7)倍の太陽質量 (低質量星) 有効表面温度 2000-3800K (低温度星) → 冷たく, 暗く, 小さな星

透過スペクトルで見えるhot Neptuneの大気

GJ1214bの多波長同時測光観測と大気組成

(Bean+10;11;Desert+11;Croll+11;Crossfield+11; Berta+11;12;de Mooji+12;13;Fraine+13;Teske+13;Narita+12;13)

HST (WFC)によるGJ1214bの多波長NIR測光観測

Kreidberg et al. (2014), Nature

Time from central transit (minutes)

HST (WFC)によるGJ1214bの多波長NIR測光観測

GJ3470bの多波長同時測光観測

GJ 3470bの多波長測光観測と大気組成

Hot Neptune大気のhaze生成

eccentricなhot Neptune, GJ 436b

(1) J-band付近: CH₄-poor, richの有無
(2) 可視光域の強い分子吸収:高い[Fe/H]かどうか
(3) 可視光域のRayleigh散乱: haze(光化学)/雲の有無

GJ 436bの3D大気循環: Jetと温度分布

※ GJ1214bの場合 (Menou, 2012) ※ 地球likeな潮汐固定された惑星の場合 (Joshi+97, Joshi,03; Edson+11; Merlis & Schneider, 2010)

GJ436bのMIR観測:Fluxの位相変化

高い [Fe/H]: (a) 赤道面付近はより高温 (b) 東向き赤道方向に波状の高速ジェット (→ 位相毎で風速に大きな違い)

低温度星周りの Sub/Super-Earth : Water World

『30倍の地球質量以下の固体惑星(岩石/H2O)』

高圧・高温下での水の状態図

Super-Earth内部の水の状態は?

液体の水を育む惑星:生命居住可能な惑星

『表面に**液体の水**を保持』--- **生命居住可能**な惑星 (1) **恒星**からの**適度な距離** (2) **適度な温室効果**

habitable zone (Goldilocks zone) (Kasting+93;Selsis+07;Kopparapu+13)

低温度星周りの宇宙望遠鏡 将来計画

ご清聴ありがとうございました