ON THE CHALLENGES OF SIMULATING THE EARLY MARS ENVIRONMENT(S) WITH CLIMATE MODELS AND LAB EXPERIMENTS

Martin Turbet, Jean-Michel Hartmann, Ha Tran, Christian Boulet, Tijs Karman, Didier Mondelain, Alain Campargue, François Forget, Ehouarn Millour, Edwin Kite, Olivier Pirali, Cédric Gillmann, Baptiste Baudin, Vladimir Svetsov

THE EARLY MARS ENIGMA

20 km

MAP OF KNOWN VALLEY NETWORKS

- Formed 3.5-3.8 billion years ago
- \blacktriangleright Likely required > 10⁵ years to form

OVERWHELMING NUMBER OF PIECES OF EVIDENCE FOR THE PRESENCE OF LIQUID WATER

1) Valley Networks

OVERWHELMING NUMBER OF PIECES OF EVIDENCE FOR THE PRESENCE OF LIQUID WATER

1) Valley Networks
 2) High erosion rates

Crater infilling + rim erosion

HIGH EROSION RATES OF OLD CRATERS (3.5-4Gyo)

Craddock & Howard 2002 Mangold et al. 2012

OVERWHELMING NUMBER OF PIECES OF EVIDENCE FOR THE PRESENCE OF LIQUID WATER

1) Valley Networks
 2) High erosion rates
 3) Presence of sediments

Malin and Edget 2003 Moore et al. 2003

See also Mangold and Ansan 2006

 centimeters

 10
 20
 30
 40

0

50

Curiosity, Gale Crater, 07/2014

OVERWHELMING NUMBER OF PIECES OF EVIDENCE FOR THE PRESENCE OF LIQUID WATER

- 1) Valley Networks
- 2) High erosion rates
- 3) Presence of sediments
- 4) Widespread hydrated minerals

MAP OF HYDROUS MINERAL DETECTIONS

Carter et al. 2011

See most recent map in Carter et al. 2019, 2020

OVERWHELMING NUMBER OF PIECES OF EVIDENCE FOR THE PRESENCE OF LIQUID WATER

- 1) Valley Networks
- 2) High erosion rates
- 3) Presence of sediments
- 4) Widespread hydrated minerals
- 5) Shorelines*, evidence for tsunami events*

Artist's depiction of the life cycle of a Sun-like star

Credit: ESO

THE FAINT YOUNG SUN:

The Sun was about 25% fainter 3.5-4 billion years ago
 Mars received about 0.32 solar constant

WHAT ATMOSPHERE FOR EARLY MARS?

See review in *Kite (2019)*

Carus Volume 315, 15 November 2018, Pages 146-157

Loss of the Martian atmosphere to space: Presentday loss rates determined from *MAVEN* observations and integrated loss through time

B.M. Jakosky ^a ^A ^{III}, D. Brain ^a ^{III}, M. Chaffin ^a ^{III}, S. Curry ^{III}, J. Deighan ^a ^{III}, J. Grebowsky ^f ^{III}, J. Halekas ^r ^{III}, F. Leblanc ⁱ ^{III}, R. Lillis ^{III}, J.G. Luhmann ^{IIII}, L. Andersson ^a ^{III}, N. Andre ^b ^{III}, D. Andrews ^C ^{III}, D. Baird ^d ^{III}, D. Baker ^a ^{III}, J. Bell ^e, M. Benna ^f ^{III}, D. Bhattacharyya ^g ^{III}. R. Zurek ^B

B Show more

https://doi.org/10.1016/j.icarus.2018.05.030

Get rights and content

Highlights

- MAVEN has observed the Martian upper atmosphere for a full Martian year, and has determined the rate of loss of gas to space and the driving processes; 1–2kg/s of gas are being lost.
- The loss rate extrapolated back in time gives an estimate of the total loss of gas to space and its impact on Martian climate history; an estimated 0.8 bars or more of CO2 likely has been lost.
- Loss to space has been the major process driving climate change on Mars.

CAN A PURE CO₂ ATMOSPHERE WARM EARLY MARS?

CAN A PURE CO₂ ATMOSPHERE WARM EARLY MARS?

Share Export

Icarus Volume 71, Issue 2, August 1987, Pages 203-224

The case for a wet, warm climate on early Mars

J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff

Show more

https://doi.org/10.1016/0019-1035(87)90147-3

Get rights and content

Abstract

Theoretical arguments are presented in support of the idea that Mars possessed a dense CO₂ atmosphere and a wet, warm climate early in its history. Calculations with a one-dimensional radiative-convective climate model indicate that CO₂ pressures between 1 and 5 bars would have been required to keep the surface temperature above the freezing point of water early in the planet's history. The higher value corresponds to globally and orbitally averaged conditions and a 30% reduction in solar luminosity; the lower value corresponds to conditions at the equator during perihelion at times of high orbital eccentricity and the same reduced solar luminosity.

Also Kasting, 1991 Forget and Pierrehumbert, 1997 Haberle, 1998 Mischna et al, 2000

SCENARIOS FOR THE WARMING OF EARLY MARS

Follow the debate

CO₂ ice clouds

Forget & Pierrehumbert 1997 Forget et al. 2013 Kitzmann et al. 2013, 2016, 2017

H₂O ice clouds

Urata & Toon 2013 Wordsworth et al. 2013 Ramirez & Kasting 2017 Turbet et al. 2020a

WARMING BY CO₂ ICE CLOUDS BACK-SCATTERING

Forget & Pierrehumbert 1997

WARMING BY CO₂ ICE CLOUDS BACK-SCATTERING

CO₂ ice clouds coverage

Main caveats:

- 1) Partial CO₂ cloud coverage (*Forget et al. 2013*)
- 2) Scattering effect overestimated (Kitzmann 2016)

WARMING BY H₂O ICE CLOUDS

Urata & Toon 2013 Wordsworth et al. 2013 Ramirez & Kasting 2017 Turbet et al. 2020a

Main caveats:

- 1) Cloud coverage must be very high
- 2) Size of H_2O ice particles must be tuned
- 3) Altitude of clouds must be tuned
- 4) Precipitations must be artificially suppressed

SCENARIOS FOR THE WARMING OF EARLY MARS

Follow the debate

Johnson et al. 2008 Tian et al. 2010 Mischna et al. 2013 Halevy & Head 2014 Kerber et al. 2015

WARMING BY VOLCANIC GASES (SO_2 , H_2S)

Kerber et al. 2015

WARMING BY VOLCANIC GASES (SO_2 , H_2S)

SCENARIOS FOR THE WARMING OF EARLY MARS

F

Follow the debate

Segura et al. 2002, 2008, 2012 Turbet 2018 Steakley et al. 2019 Turbet et al. 2020a

IMPACT CRATERS ON MARS

Map of impact craters on Mars

Made with the Robbins crater database

Map of impact craters on Mars

Made with the Robbins crater database

Map of impact craters on Mars

VERY BIG IMPACT EVENTS

VERY BIG IMPACT EVENTS

Turbet et al. 2020a

100km diameter meteorite impacting a 1bar CO₂ atmosphere

Atmosphere + Subsurface = 500 Kelvins
 Vaporization of 1bar of H₂O (30m GEL)

after 0.1 martian years

40

VERY LARGE IMPACT EVENTS

Turbet et al. 2020a

Cumulated rainfall in 3D climate simulation

Cumulated rainfall (m)

VERY LARGE IMPACT EVENTS

Turbet et al. 2020a

Cumulated rainfall in 3D climate simulation

Cumulated rainfall (m)

45°W

0°E

45%

Positions of valley networks

0°N

30°5

60°S

Turbet et al. 2020a

Turbet et al. 2020a

Turbet et al. 2020a

Turbet et al. 2020a

Turbet et al. 2020

VERY LARGE IMPACTS In summary, Turbet

Turbet et al. 2020a

No self-sustained 'RUNAWAY CLIMATE'
Warming is instead SHORT-LIVED
(O(10¹) martian years for the largest impact events).
Precipitation are (1) deluge-style, (2) insufficient and (3) uncorrelated with valley networks positions.

Remark: Very large impacts could have contributed to (1) mineralogy and (2) the crater rim degradation.

Map of impact craters on Mars

Map of impact craters on Mars

Latitude

HYDROCODE SIMULATIONS

Turbet 2018, PhD thesis

15-km diameter body hitting the surface of Mars

HYDROCODE SIMULATIONS

Ejecta field after the impact event

Turbet 2018, PhD thesis

Density of water particles (in g/cm³)

Upper atmosphere water ice clouds sediment rapidly

Turbet 2018, PhD thesis

Upper atmosphere water ice clouds sediment rapidly

Turbet 2018, PhD thesis

Hot Stony Ejecta Layer after the impact event

Turbet 2018, PhD thesis

MELTING OF THE PERMANENT ICE RESERVOIRS

Results: Melting of a <u>85 cm</u> Global Equivalent Layer MAXIMUM

Turbet 2018, PhD thesis

AMOUNT OF ICE MELTING

Turbet 2018, PhD thesis

- ➢ <u>Maximum</u> cumulated melt production:
- 150m GEL for 5-50km diameter impactors
- 70m GEL for <5 km diameter impactors
- 220m GEL in total
- ➢ <u>Minimum</u> total water required to carve the valley networks:
- 5000m GEL (Luo et al. 2017)
- 640m GEL (Rosenberg et al. 2018)

<u>CONCLUSION:</u> MELT PRODUCTION IS NOT SUFFICIENT ENOUGH TO CARVE THE VALLEY NETWORKS

Possible sources of H₂:

- Outgassing from a reduced early Martian mantle (Ramirez et al. 2014)
- Serpentinization (see Chassefière et al. 2016)
- Radiolysis (Tarnas et al. 2018)
- Atmospheric thermochemistry following large meteorite impacts (Haberle et al. 2019)

- N₂-H₂ (exp+theory)

CO₂-H₂ (theory)

EXPERIMENTS AT THE SOLEIL SYNCHROTRON / AILES LINES

Turbet et al. 2019, lcarus

Turbet et al. 2019, Icarus

N₂-H₂ (exp+theory)

CO₂-H₂ (theory)

CO₂-H₂ (exp)

Turbet et al. 2019, Icarus

N₂-H₂ (exp+theory)

CO₂-H₂ (theory)

CO₂-H₂ (exp)

CO₂-H₂ (2nd exp)

Turbet et al. 2019, Icarus Turbet et al. 2020b (available on arXiv)

THE CAVITY RING DOWN SPECTROSCOPY (CRDS) GRENOBLE EXPERIMENTAL SETUP

COMPLEAT Project – Credit: D. Mondelain and A. Campargue

Simulation of the Early Mars Climate : a hierarchy of models...

ID global radiative convective models

⇒ To evaluate global mean surface temperature with various atmospheres

(e.g. Kasting et al. 1991, Forget and Pollack 1997, Wordsworth et al. 2010, Ramirez et al. 2014, 2017, Turbet & Tran 2017)

Global mean Temperature
Simulation of the Early Mars Climate : a hierarchy of models...

Global mean Temperature

ID global radiative convective models

➡ To evaluate global mean surface temperature with various atmospheres (e.g. Kasting et al. 1991, Forget and Pollack 1997, Wordsworth et al. 2010, Ramirez et al. 2014, 2017, Turbet & Tran 2017, Turbet et al. 2020ab)

Solution 3D Global Climate model with a converged water cycle

⇒ To evaluate local surface temperatures & their variations with season, obliquity, the role of clouds, etc …

(e.g. Forget et al. 2013, Mischna et al. 2013, Kerber et al. 2015, Turbet & Forget 2019)

⇒ To evaluate rain, snow melting, and long-term evolution of the full water cycle.

(e.g. Wordsworth et al. 2013, 2015, Turbet et al. 2017a, see also Turbet's 2018 PhD thesis, Turbet et al. 2020a)

3-D CLIMATE SIMULATIONS OF REDUCING ATMOSPHERES ON MARS

Turbet & Forget, in preparation

1) Implementation of the radiative effect of CO₂+H₂ atmospheres

3-D CLIMATE SIMULATIONS OF REDUCING ATMOSPHERES ON MARS

Turbet & Forget, in preparation

 Implementation of the radiative effect of CO₂+H₂ atmospheres
Implementation of water reservoirs and their effect on topography

3-D CLIMATE SIMULATIONS OF REDUCING ATMOSPHERES ON MARS

- 1) Implementation of the radiative effect of CO_2+H_2 atmospheres
- 2) Implementation of water reservoirs and their effect on topography
- 3) Implementation of the climatic effect of impact crater lakes and their evolution

0.8bar pure CO₂ Atmosphere

Turbet & Forget, in preparation

1st result – Average Tsurf > 273K condition doesn't hold in 3D

- Water trapped in cold points
- Ice/Snow albedo feedback

Example: 0.8bar CO₂ atmosphere with 20% H_2 , low water content

Turbet & Forget, in preparation

104

Surface

(K)

(mm)

2nd result –

The temperature of the coldest point of the planet (usually the highlands for thick atmospheres) needs to be above 273K to avoid water cold trapping.

Example: 2.3bar CO₂ atmosphere with 5% H_2 , low water content

Turbet & Forget, in preparation

105

<u>3rd</u> result

 « Icy highland » scenario can also work in <u>warm mode</u> (« Wet Highlands) with water trapped in the liquid form in the southern highland lakes

Example: 2.3bar CO₂ atmosphere with 5% H₂, low water content (~1m GEL)

Position of impact-crater lakes and precipitation/runoff can be tuned assuming various water reservoir size and position

Example: 2.3bar CO₂ atmosphere with 5% H₂, low water content (~10m GEL)

2.3bar CO₂ atmosphere with 5% H₂ with small oceans

2.3bar CO₂ atmosphere with 5% H₂ with large oceans

CONCLUSIONS/SUMMARY

- The « Hydrogen solution » is promising but still challenging:
 - The measured Collision-Induced Absorption (inducing greenhouse effect) not as strong as previously estimated
 - In 3D more greenhouse effect is required to avoid complete freezing of the water in cold traps (especially if one want to avoid any glaciation !)
- However, with enough greenhouse effect promising solution with realistic run-off seems possible.
- Too much greenhouse effect or too much water can provide irrealistic results (for instance with too many open-lake basin, or heavy precipitation near coastlines).
- To be continued !